DISTANCE PROBLEMS IN NETWORKS - THEORY AND PRACTICE

Classical Shortest-Path Algorithms

Nesrine Damak

October 10, 2010

Abstract

In this work, we present four algorithms for the shortest path problem. The first is a greedy
approach that yields the optimal solution when all arc weights are positiv. If some weights
are negative but no negative cycles exist, Bellman-Ford algorithm may be used. For all pairs
shortest path-problem is Floyd-Warshall and Johnson algorithm the appropriate ones.

Contents

ng 0 ho h
Breadth-fi h (B nweighted casd
a-algorithm for no negativ edge-weights
he general case: Bellman-Ford algorithm

1 Introduction

Definition 1.1. A graph G(V,E) is a set V of vertices, a set E of edges, and a real-valued
weight function f: E — R.

Definition 1.2. A path P in G is a sequence of vertices (v1,..,v,) such that (vi,vit1) € E
foralll<i<mnandvelV.

Definition 1.3. The weight of a path P in G is the sum of the weights of its edges: w(P) =
> w(vie1,v;).

Definition 1.4. For nodes u,v € V, the shortest path weight from u to v is defined to be:
0(u,v) = min(w(P)) if such a P exists or infinity otherweise.

Definition 1.5. For nodes u,v € V' a shortest path from u to v is a path with w(P) = §(u,v)

The problem of finding shortest paths in a graph has a surprising variety of applications:

e The most obvious applications arise in transportation or communications, such as find-
ing the best route to drive between Berlin and Munich or figuring how to direct packets
to a destination across a network.

e Consider the problem of image segmentatio, that is, separating two characters in a
scanned, bit-mapped image of printed text. We need to find the separating line between
two points that cuts through the fewest number of black pixels. This grid of pixels can
be modeled as a graph, with any edge across a black pixel given a high cost. The shortest
path from top to bottom defines the best separation between left and right.

e A major problem in speech recognition is distinguishing between words that sound alike
(homophones), such as to, two, and too. We can construct a graph whose vertices corre-
spond to possible words, with an edge between possible neighboring words. If the weight
of each edge measures the likelihood of transition, the shortest path across the graph
defines the best interpretation of a sentence.

e Suppose we want to draw an informative picture of a graph. The center of the page
should correspond to the “center” of the graph, whatever that means. A good definition
of the center is the vertex that minimizes the maximum distance to any other vertex in
the graph. Finding this center point requires knowing the distance (i.e. shortest path)
between all pairs of vertices.

2 Single-Source Shortest Paths

Input: A graph G = (V| E), an edge weight function w and a node s € V.
Output: A shortest path P from s to all other vertices v € V {s}.

In computer vision, segmentation refers to the process of partitioning a digital image into multiple segments
(sets of pixels, also known as superpixels). The goal of segmentation is to simplify and/or change the representation
of an image into something that is more meaningful and easier to analyze.

2.1 Breadth-first search (BFS): unweighted case

The breadth-first search is a graph search algorithm that begins at the root node and explores
all the neighboring nodes. Then for each of those nearest nodes, it explores their unexplored
neighbor nodes, and so on, until it finds the goal.
The graph is unweighted, that means: w(u,v) = 1 for all wv € E. We use a simple FIFO
queue,so that the time complexity is: O(V + E)
BFS(G)
while @) # empty do
u<+ DEQUEUE(Q) ;
for each v € adj(u) ifdist(v) = oo dist(v) = dist(u) + 1 ;
ENQUEUE(Q,v) ;
end

Algorithm 1: Breadth-first search

2.2 Dijkstra-algorithm for no negativ edge-weights

Dijkstra’s algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956 and pub-
lished in 1959, is a graph search algorithm that solves the single-source shortest path problem
for a graph with no negative edge path costs, producing a shortest path tree.
Algorithm starts at the source vertex, s, it grows a tree, T', that ultimately spans all vertices
reachable from S. Vertices are added to T in order of distance, i.e., first S, then the vertex
closest to S, then the next closest, and so on. Following implementation assumes that graph
G is represented by adjacency lists. We also define dist(x) as the distance from the initial
node to x.

Data: G=(V,E)

Result: Shortest path

dist(s) < 0;

for v e V —{s} do

‘ dist(v)«— o0;

end

S« empty ;

Q < V (Q is a priority queue maintaining V-S) ;

while Q) # empty do
u <+ Extract — Min(Q) ;
S« Su{u};
for v € adj(u) do

if dist(v) > dist(u) + w(u,v) then

| dist(v) < dist(u) + w(u,v) ;

end

end

end
Algorithm 2: Pseudocode of DIJKSTRA-algorithm

At each iteration the algorithm computes the length of the path to every unsolved node
through only solved nodes. The unsolved node with the shortest path length is added to the
solved set. The process terminates when a spanning tree is obtained. Since a node is added
to the tree at each step the algorithm requires V' — 1 iterations. The algorithm works because
of the assumption of no negative arc lengths.
Dijkstra’s algorithm computes the shortest paths to all nodes in the Graph. If only one
shortest path is needed to a target node ¢t aus V | the algorithm can stop if the target ¢ is
removed from the priority queue in line 4.
Proof of correctness:

Let dist(v) be the label found by the algorithm and let §(v) be the shortest path distance from
s to v. We want to show that dist(v) = 0(v) for every vertex v at the end of the algorithm,
showing that the algorithm correctly computes the distances. We prove this by contradiction
via the following theorem:

Theorem 1. Dijkstra’s Algorithm terminates with dist(v) = 0(s,v)forallv € V.

Proof. it suffices to show that dist(v) = d(s,v) foreveryv € V when v is added to S. Suppose
u is the first vertex added to S for which dist(u) > d(s,u). Let y be the first vertx in V' — S
along a shortest path from s to u and let x be its predecessor. Since u is the first vertex
violating the claimed invariant, we have dist(z) = d(s,x). When x was added to S, the edge
xy was relaxed, which implies that dist(y) = d(s,y) < d(s,u) < dist(u). But dist(u) < dist(y)
by our choice of u : Contradiction! O

With a binary heap, the algorithm requires O((|E|+ |V|)log|V]) time (which is dominated
by O(|E|log|V]), assuming the graph is connected), and the Fibonacci heap improves this to
O(|E| + [V]log|V]).

Definition 2.1. Fibonacci heap is a heap made of a forest of trees. The amortized cost of the
operations create, insert a value, decrease a value, find minimum, and merge or join (meld)
two heaps, is a constant ©(1). The delete operation takes O(log n).

Proof of the time complexity (Fibonacci-heaps):

Initialization O(|V])
Extract-Min |V|O(log|V])
DecreaseKey |E|O(|V])

so is the time complexity of Dijkstra :O(|E| + |V|log|V])

2.3 The general case: Bellman-Ford algorithm

Bellman—Ford is used primarily for graphs with negative edge weights, it is named after its
developers, Richard Bellman and Lester Ford, Jr. The algorithm initializes the distance to
the source vertex to 0 and all other vertices to infinity. It then does V' — 1 passes (V is the
number of vertices) over all edges relaxing, or updating, the distance to the destination of
each edge. Finally it checks each edge again to detect negative weight cycles, in which case it
returns false.

The main idea is that if the edge uv is the last edge of the shortest path to v, the cost of
the shortest path to v is the cost of the shortest path to u plus the weight of w(u,v). Thus, if
we iterate through every edge uv in the graph and call relax(u, v), then we would have found
the shortest path for every vertex whose shortest path consists of only one edge. If we build
upon this solution and call relax(u, v) again for every edge, then we would have found the
shortest path for every vertex whose shortest path consists of two edges or less. Continuing
in this fashion, after the kth iteration, we would have found the shortest path for every vertex
whose shortest path consist of k edges or less. Since the shortest path in a graph with V ver-
tices and E edges has at most V' —1 edges, we only need to repeat the process at most V-1 time.

Data: G=(V.E)
Result: Shortest path
Step 1: initialize graph ;
for each v € V do

if v is source then

‘ dist(v) :==0;
end
dist(v) := 00 ;
pred(v) := null;

end
Step 2: relax edges repeatedly@ ;
for i from 1 to V-1 do
for each edge uv € E do
if dist(u) + w(u,v) < dist(v) then
dist(v) := dist(u) + w(u,v) ;
pred(v) == u ;
end
end

end
Step 3: check for negative-weight cycles ;
for each edge uv € E do

if dist(u) + w(uv) < dist(v) then

‘ error ”Graph contains a negative-weight cycle” ;

end

end
Algorithm 3: Pseudocode of Bellman-Ford-algorithm

“replaces equality constraints in the original problem with an inequality constrain
Proof of correctness:

The correctness of the algorithm can be shown by induction. The precise statement shown by
induction is:

Lemma 2.2. After i repetitions of for cycle: If dist(u) is not infinity, it is equal to the length
of some path from s to u; If there is a path from s to u with at most i edges, then dist(u) is at
most the length of the shortest path from s to u with at most i edges.

Proof. For the base case of induction, consider i=0 and the moment before for cycle is executed
for the first time. Then, for the source vertex, dist(s) = 0, which is correct. For other vertices
u, dist(u) = infinity, which is also correct because there is no path from source to u with 0
edges.

For the inductive case, we first prove the first part. Consider a moment when a vertex’s
distance is updated by dist(v) := dist(u) + w(uv). By inductive assumption, dist(u) is the
length of some path from source to u. Then dist(u) + w(u,v) is the length of the path from
source to v that follows the path from source to v and then goes to v. For the second part,
consider the shortest path from source to u with at most 7 edges. Let v be the last vertex
before u on this path. Then, the part of the path from source to v is the shortest path
from source to v with at most i — 1 edges. By inductive assumption, dist(v) after i — 1
cycles is at most the length of this path. Therefore, w(uv) + dist(v) is at most the length
of the path from s to u. In the ith cycle, dist(u) gets compared with w(uv) + dist(v), and
is set equal to it if w(uv) 4 dist(v) was smaller. Therefore, after i cycles, dist(u) is at most
the length of the shortest path from source to u that uses at most ¢ edges. If there are no
negative-weight cycles, then every shortest path visits each vertex at most once, so at step
3 no further improvements can be made. Conversely, suppose no improvement can be made.

Then for any cycle with vertices vo, ..., vg—1, dist(v;) <= dist(v(i—1)ymodk) + W(V(i=1)modk> Vi)
Summing around the cycle, the dis(v;) terms and the dist(v;_1(medr)) terms cancel, leaving
0 <= sum fromltokofw(vi_i(modk), Vi), i-e., every cycle has no negative weight.

|

Bellman—Ford runs in O(|V|.|E|) time (at least quadratic), where |V | and |E| are the num-
ber of vertices and edges respectively.

3 All Pairs Shortest Paths

Input: A connected graph G=(V,E) and an edge weight function w.
Output: For all pairs u,v € V of nodes a shortest path from u to v.

3.1 Definition and naive implementation

The all-pairs shortest path problem can be considered the mother of all routing problems.
It aims to compute the shortest path from each vertex v to every other u. Using standard
single-source algorithms, you can expect to get a naive implementation of O(V E + V?2logV)
if you use Dijkstra for example — i.e. running a O(F + ViogV') process |V| times. Likewise, if
you use the Bellman-Ford algorithm on a dense graph, it will take about O(V2E), but handle
negative edge-weights too. Storing all the paths explicitly can be very memory expensive
indeed, as you need one spanning tree for each vertex. This is often impractical in terms of
memory consumption, so these are usually considered as all-pairs shortest distance problems,
which aim to find just the distance from each to each node to another. The result of this
operation is an m X n matrix, which stores estimated distances to the each node. This has
many problems when the matrix gets too big, as the algorithm will scale very poorly.

3.2 Floyd Warshall

Floyd-Warshall is an algorithm to solve the all pairs shortest path problem in a weighted, di-
rected graph by multiplying an adjacency-matrix representation of the graph multiple times.It
takes the dynamic programming approach: This essentially means that independent sub-
problems are solved and the results are stored for later use. The edges may have negative
weights, but no negative weight cycles.

FLOYD-WARSHALL(G,V)

Data: G=(V,E)
Result: Shortest path
for ¢ = 1toV do
for j = 1toV do
if there is an edge from i to j then
‘ dist0)(i, j) = thelengtho ftheedge fromitoy;
end
dist©) (i,) = o0 ;
end
nd
or k= 1toV do
for ¢« = 1toV do
for j = 1toV do
| dist®) (i, §) = min(dist* =V (4, j), dist* D (i, k) + dist* D (K, 5)) ;
end

= 0

end

end
Algorithm 4: Pseudocode of Floyd-Warshall-algorithm

How do we compute dist*) (i, j) assuming that we have already computed the previous matrix
DIST*-1?

We don’t go through k at all: Then the shortest path from i to j uses only intermediate vertices
{1,...,k — 1} and hence the length of the shortest path is dist*=1 (i, 7).

We do go through k: we can assume that we pass through k exactly once (no negative cycles).
That is, we go from i to k, and then from k to j: we should take the shortest path from i to
k, and the shortest path from k to j (optimality).

Each of these paths uses intermediate vertices only in {1,2,..,k — 1}. The length of the path
is : dist* =V (i, k) + dist*=D(k, 7).

This suggests the following recursive rule for computing DIST®*):

dist© (i, 5) = w(i, j) and dist™® (i, 5) = min(dist* =V (i, §), dist®=D (i, k) + dist*=(k, j))
The algorithm runs in ©(V?3) time, is simple to code and efficient in practice.

3.3 Johnson algorithm

It’s an algorithm to solve the all pairs shortest path problem in a sparse weighted, directed
graph. First, it adds a new node with zero weight edges from it to all other nodes, and runs the
Bellman-Ford algorithm to check for negative weight cycles and find h(v), the least weight of
a path from the new node to node v. Next it reweights the edges using the nodes h(v) values.
Finally for each node, it runs Dijkstra’s algorithm and stores the computed least weight to
other nodes, reweighted using the nodes h(v) values, as the final weight. Johnson’s algorithm
consists of the following steps:

Data: G=(V,E)
Result: Shortest path
Compute G’, where V[G'] = V[G] U s ;
E|G'] = E[G|U (s,v) : v € V[G] ;
for all v € V]G] do
‘ w(s,v) =0;
end
if BELLMAN — FORD(G',w,s) = FALSE then
‘ print the input graph contains a negative weight cycle ;
end
for each vertez v € V[G'] do
‘ set h(v) to the value of é(s,v) computed by the Bellman-Ford alg.;
end
for each edge (u,v) € E[G'] do
W(u,v) wu,v) + h(u) — h(v) ;
for each vertex uw € V|G| do
run DIJKSTRA (G, w,u) to compute §'(s,v) for all v € V[G];
for eachvertexv € V|G| do
| d(u,v) + &'(s,v) + h(v) — h(u) ;
end

end

end

return D ;

Algorithm 5: Pseudocode of Johnson-algorithm

First, a new node s is added to the graph, connected by zero-weight edges to each other node.
Second, the Bellman-Ford algorithm is used, starting from the new vertex s, to find for each
vertex v the least weight h(v) of a path from ¢ to v. If this step detects a negative cycle, the
algorithm is terminated.

Next the edges of the original graph are reweighted using the values computed by the Bellman-
Ford algorithm: an edge from uto v, having length w(u,v), is given the new length w =
w(u,v) + h(u) — h(v).

The is non-negativ because 6(s, u)+w(u,v) > d(s,v) otherwise s — u — v would be shorter
than the shortest path s — v.

Finally, s is removed, and Dijkstra’s algorithm is used to find a shortest path from each node
to every other vertex in the reweighted graph.

The reweighting preserves the shortest-path-weight. We have:

w(p) = > w(vi, vit1) = w(vy,v2) +0(s,v1) — (s, v2) + +w(vg_1,vk) + (8, vp—1) — (s, vg)
= w(p)+9(s,v1) — (s, vg) with (s, v1) —d(s,vx) a value that depends only on the endpoints,
not the path. The time complexity of this algorithm, using Fibonacci heaps in the imple-
mentation of Dijkstra’s algorithm, is O(V?2logV + V E): the algorithm uses O(V E) time for
the Bellman—Ford stage of the algorithm, and O(V logV + E) for each of V instantiations of
Dijkstra’s algorithm.

Thus, when the graph is sparse, the total time can be faster than the Floyd—Warshall algo-
rithm, which solves the same problem in time O(V?3).

References

www.wikipedia.de
Videoslectures of Massachusetts Institute of Technology

	Introduction
	Single-Source Shortest Paths
	Breadth-first search (BFS): unweighted case
	Dijkstra-algorithm for no negativ edge-weights
	The general case: Bellman-Ford algorithm

	All Pairs Shortest Paths
	Definition and naive implementation
	Floyd Warshall
	Johnson algorithm

