Sommersemester 2005 Übungsblatt 3 29. April 2005

Informatik IV

Abgabetermin: 06.05.2005 vor der Vorlesung

Aufgabe 1 (10 Punkte)

Zeigen Sie, dass es für die Sprache $L_k \subset \{0,1\}^*$ (k>0)

$$L_k = \{w; |w| \ge k \text{ und das } k\text{-letzte Zeichen von } w \text{ ist } 0\}$$

einen nicht-deterministischen endlichen Automaten mit k+1 Zuständen gibt, aber keinen deterministischen endlichen Automaten mit weniger als 2^k Zuständen.

Aufgabe 2 (10 Punkte)

Gegeben Sei folgende linkslineare Grammatik $G = (\{S, A, B, C, D\}, \{a, b\}, P, S)$ mit folgenden Produktionen in P:

$$S \rightarrow Sa|Bb$$
.

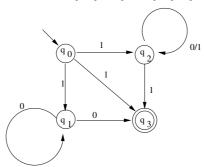
$$A \rightarrow Ca|Sb|b.$$

$$B \rightarrow Cb|Aa$$
.

$$C \rightarrow Ab|Da$$
.

$$D \rightarrow Db|Ba$$
.

Geben Sie für die Sprache L(G) eine rechtslineare Grammatik an.


Hinweis: Konstruieren Sie dazu den Automaten für L(G)

Aufgabe 3 (10 Punkte)

Zeigen Sie: Sei L eine reguläre Sprache. Dann gibt es eine Chomsky-3-Grammatik G mit L = L(G), so dass $l \in V$, $r \in \Sigma \cup \Sigma V$ für alle Produktionen $l \to r \in P \setminus \{S \to \epsilon\}$ gilt.

Aufgabe 4 (10 Punkte)

Gegeben sei der NFA $N = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \delta, \{q_0\}, \{q_3\})$

(a) Welche Sprache erkennt der NFA N ? Geben Sie einen regulären Ausdruck für die Sprache an.

(b) Transformieren Sie N mit Hilfe der Potenzmengenkonstruktion in einen deterministischen Automaten, der dieselbe Sprache akzeptiert. Geben Sie den Automaten als Zustandsgraph an!

Aufgabe 5 (10 Punkte)

Wir definieren einen deterministischen endlichen Zweiwege-Automaten (2DFA) als Quintupel $M = (Q, \Sigma', \delta, q_0, F)$, wobei Q die Zustandsmenge, $\Sigma' = \Sigma \uplus \{\$_l, \$_r\}$ das Bandalphabet, $\delta : Q \times \Sigma' \to Q \times \{L, R\}$ die Zustandsübergangsfunktion, q_0 der Startzustand und F die Menge der akzeptierenden Zustände ist. Wir betrachten Eingaben der Form $\$_l w \$_r$, $w \in \Sigma^*$. Falls der Automat im Zustand q ist, das Zeichen a gelesen wird und $\delta(q, a) = (q', X)$, dann geht M in den Zustand q' über und der Lesekopf bewegt sich um eine Position nach links bzw. rechts, je nachdem, ob X = L oder X = R. Nicht erlaubt sind Übergänge, die den Kopf links über $\$_l$ bzw. rechts über $\$_r$ hinaus bewegen würden. Des Weiteren nehmen wir o.B.d.A. an, dass M nur akzeptiert, wenn dann der Lesekopf über $\$_r$ steht.

Das Eingabeband besteht aus Feldern $F_0F_1 cdots F_{k+1}$ (k ist die Länge der Eingabe w) und und ist mit $\$_l w\$_r$ beschrieben. Wir betrachten Kreuzungsfolgen bei 2DFAs, die wie folgt definiert sind: Zu jedem Zwischenraum zwischen zwei Feldern F_iF_{i+1} des Eingabebandes definieren wir die dazugehörende Kreuzungsfolge c_i als die Folge der Zustände q', die entstehen, wenn der Lesekopf über Feld F_i steht, $\delta(q, T_i) = (q', R)$ gilt, wobei T_i das Zeichen ist, das in dem Feld F_i enthalten ist, oder entsprechend für den Fall, dass der Lesekopf über Feld F_{i+1} steht, $\delta(q, T_{i+1}) = (q', L)$ gilt, wobei T_{i+1} das im Feld F_{i+1} enthaltene Zeichen ist.

- (a) Zeigen Sie, dass alle Kreuzungsfolgen endlich sind, falls der 2DFA terminiert. Begründen Sie, warum $|c_i| \le 2|Q| 1$ gilt.
- (b) Zeigen Sie: Jede Sprache die von einem 2DFA erkannt wird, ist regulär (Hinweis: Fassen Sie die Kreuzungsfolgen als Zustände eines NFA auf). Gilt auch die Umkehrung?