
10 Quantum Complexity Theory II

In this section we introduce basic techniques for performing quantum computations. We will
apply them to two problems: a problem by Deutsch and Jozsa and the prime factoring problem.

10.1 Quantum bits

The simplest unit to apply quantum operations to is a single bit, called quantum bit or qubit
in the following. A qubit can be realized in many different ways such as, for instance, by
the polarization of a photon or the spin of an atom. If a qubit is realized with the help of
the polarization of a photon, we may view the basis states |0〉 and |1〉 as a horizontally and
vertically polarized photon. A photon going through a transparent tank of sugar water will
have its polarization slowly rotated. The amount of rotation depends on the length of the tank
and the density of sugar. By appropriately setting these parameters, the tank can be made to
induce a 45 degree rotation on incoming photons. Thus, it will have the following effect:

• |0〉 will be transformed into 1√
2
(|0〉+ |1〉) and

• |1〉 will be transformed into 1√
2
(−|0〉+ |1〉).

The transformation induced on the basis states completely determines the matrix A. If |ϕ〉 =
α|0〉+ β|1〉 is shot through the tank, it will come out transformed into state |ϕ′〉 where

|ϕ′〉 = A|ϕ〉
= A(α|0〉+ β|1〉)
= αA|0〉+ βA|1〉
= α

(
1√
2
(|0〉+ |1〉)

)
+ β

(
1√
2
(−|0〉+ |1〉)

)

=
1√
2
(α− β)|0〉+

1√
2
(α + β)|1〉

Or, in more familiar matrix-and-vector style:

A =
1√
2

(
1 −1
1 1

)
, |ϕ〉 =

(
α
β

)

and

|ϕ′〉 = A|ϕ〉 =
1√
2

(
1 −1
1 1

) (
α
β

)
=

(1√
2
(α− β)

1√
2
(α + β)

)
.

It is easy to check that A is a unitary matrix.

10.2 Single-bit quantum gates

Next, we consider the problem of manipulating a single qubit. In particular, we are interested
in whether any 1-qubit operation can be performed by a small set of quantum gates. In general,

1

every 2× 2 unitary matrix U is of the form
(

ei(δ+α/2+β/2) cos(Θ/2) ei(δ+α/2−β/2) sin(Θ/2)
−ei(δ−α/2+β/2) sin(Θ/2) ei(δ−α/2−β/2) cos(Θ/2)

)

for some α, β, δ, Θ ∈ IR (recall that eiδ = cos δ + i sin δ). It is not difficult to show that this can
be expressed as

(
eiδ 0
0 eiδ

) (
eiα/2 0

0 e−iα/2

) (
cos(Θ/2) sin(Θ/2)

− sin(Θ/2) cos(Θ/2)

) (
eiβ/2 0

0 e−iβ/2

)
.

The effect of the matrix

R(Θ) =

(
cos(Θ/2) sin(Θ/2)

− sin(Θ/2) cos(Θ/2)

)

is a Θ degree rotation of the state vector in the Hilbert space spanned by |0〉 and |1〉. Further-
more, let the phase matrices P0(δ) and P1(δ) be defined as

P0(δ) =

(
eiδ 0
0 1

)
and P1(δ) =

(
1 0
0 eiδ

)
.

P0(δ) causes a δ degree rotation of the amplitude of |0〉 and P1(δ) causes a δ degree rotation
of the amplitude of |1〉. Looking at the decomposition of U into four matrices above, it can be
seen that any unitary 2 × 2 matrix can be represented as the product of matrices of the form
R(Θ), P0(δ), and P1(δ). Since it would be too difficult to construct a new device for R, P0,
or P1 every time a new angle is needed, it would be highly desirable to be able to realize any
rotation matrix by the use of a matrix with a fixed angle. The next proposition shows that this
is possible.

Proposition 10.1 There is an angle Θ0 so that for any angle Θ and any ε > 0 there is a
k = O(1/ε2) so that |(k ·Θ0 mod 2π)−Θ| ≤ ε.

Proof. Choose Θ0 as

Θ0 = 2π
∑

i≥0

1

22i .

With this definition it holds for all k ≥ 0 that multiplying Θ0 with 22k
yields

(22k ·Θ0) mod 2π =


2π

∑

i≥k+1

22k

22i


 mod 2π

which is roughly 2π/22k
. Hence, multiplying Θ0 with d · 22k

for d ∈ {1, . . . , 22k} yields angles
Θ1, . . . , Θ22k such that for any Θ ∈ [0, 2π] there is an i with |Θ − Θi| ≤ 4π/22k

. Since 22k+1
=

(22k
)2, the proposition follows. ut

Hence, we obtain the following result.

Corollary 10.2 Every unitary 2 × 2 matrix U can be realized up to an error of ε by O(1/ε2)
quantum operations of the form R(Θ0), P0(δ0), and P1(δ0).

2

10.3 Quantum registers

Quantum computations generally use more than just one qubit. We will show now how the
mathematical formalism introduced in the previous subsection can be adapted to the treatment
of groups of qubits.

Definition 10.3 A quantum register is an ordered set of a finite number of qubits. The standard
basis B of an n-qubit quantum register is

B = {|i〉 : i is an n-bit binary string} .

Let |ϕ1〉 = α0|0〉+α1|1〉 and |ϕ2〉 = β0|0〉+β1|1〉 be two qubits composing a 2-qubit quantum
register. The state vector |ψ〉 of the register is defined as the tensor product of the states |ϕ1〉
and |ϕ2〉:

|ψ〉 = |ϕ1〉 ⊗ |ϕ2〉 =

(
1∑

i=0

αi|i〉
)
⊗




1∑

j=0

βj|j〉



=
1∑

i,j=0

αiβj(|i〉 ⊗ |j〉) .

By definition, the tensor product maps |i〉 ⊗ |j〉 (where i and j are basis states) to |ij〉. This
allows us to write |ψ〉 as

|ψ〉 =
1∑

i,j=0

αiβj|ij〉 .

Similarly, let A and B be two unitary matrices corresponding to two apparatuses operating on
|ϕ1〉 and |ϕ2〉 separately. The combined action of A and B on the joint state |ψ〉 = |ϕ1〉 ⊗ |ϕ2〉
is defined as a 4× 4 matrix C where

C = A⊗B =

(
a11B a12B
a21B a22B

)
=




a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22


 .

One can verify that the tensor product has the following property

(A⊗B)(|ϕ1〉 ⊗ |ϕ2〉) = (A|ϕ1〉)⊗ (B|ϕ2〉)

and that it preserves unitarity.
So far, we seem to have only complicated the notation for a basically simple situation: two

independent qubits are acted upon by two independent apparatuses. But the point in joining
two qubits is specifically to allow them to be dependent. In fact, not all states of a 2-qubit
quantum register can be expressed as the tensor product of single qubit states. An example of
such a state is

|ψ〉 =
1√
2
(|00〉+ |11〉) .

3

If |ψ〉 is observed using the standard basis, the results “00” or “11” will be seen each with
probability 1/2, but the results “01” or “10” will never be observed. When the state of an
n-qubit register cannot be expressed as the tensor product of n qubit states, the register is said
to be entangled. Similarly, not all 4× 4 unitary matrices can be expressed as the tensor product
of two 2× 2 unitary matrices. One such matrix is

C =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




which represents the following mapping of the basis states of the register: if the register’s state
is such that the first qubit is 0, no action is performed; otherwise the value of the second qubit is
negated. The above matrix performs the operation called controlled not on two quibits. This can
be extended to arbitrary controlled unitary transformations U on a qubit by using the following
matrix: 



1 0 0 0
0 1 0 0
0 0 u11 u12

0 0 u21 u22




This matrix and the 2 × 2 matrix for manipulating a single qubit have been used as the basic
building blocks to realize many complex unitary transformations including arbitrary transfor-
mations that can be performed by quantum Turing machines.

It is a simple matter to generalize what has been presented in this section to represent the
state of an n-qubit register. The general state vector |ψ〉 of an n-qubit quantum register is

|ψ〉 =
2n−1∑

i=0

αi|i〉

and the 2n vectors |i〉 form the set of basis states of the register. This means that |ψ〉 is a vector
in a 2n-dimensional Hilbert space and operations are defined by 2n × 2n unitary matrices. Ob-
servations for extracting information from the state vectors are partitions of the 2n-dimensional
Hilbert space. We are now ready to apply these notions of quantum mechanics to computation.

10.4 Computing with quantum registers

The original quantum computing model proposed by Deutsch was essentially a Turing machine,
but with the added properties that tape cells and the head’s state could be in quantum superpo-
sition. As might be imagined from the previous section, programming quantum Turing machines
is quite difficult, especially because finding a suitable transition function corresponding to a uni-
tary transformation is non-trivial. In classical complexity theory, uniform circuit families are
also commonly used as a computing model. Turing machines and uniform circuit families are
effectively equivalent in computing power in that they can simulate one another with negligible
complexity overhead. This makes the use of one or the other a matter of taste. There exists
a quantum equivalent to uniform circuit families: quantum gate arrays. They were introduced
by Deutsch and studied extensively by many authors. Yao has shown that acyclic quantum

4

gate arrays can simulate efficiently quantum Turing machines, thus making the use of one or
the other a matter of choice. However, since quantum gate arrays allow a more natural way
to introduce unitarity in computation, they are emerging as the standard quantum computing
model.

10.4.1 Quantum gate arrays

Figure 1 represents a general quantum gate array. The initial (basis) state of the register is
on the left and time flows from left to right. One might think of the particles composing the
register as traveling through the different gates. At the right end is the observation that extracts
information from the register after it has gone through all the gates.

b1

b2

b6

b7

b3

b4

b5

OA A A2 3A 1 n

Figure 1: The layout of a general quantum gate array

The sequence of computations Ai with observationO is what constitutes a quantum program.
Formally speaking, the Ai gate should be of some well-defined form corresponding to some
definition of elementary steps. For the purpose of this lecture, it is sufficient to consider any
quantum gate acting on only one or two qubits to be such an elementary step. The reader is
encouraged to consult [BBC+95] for more details on the notion of elementary quantum gates.

To illustrate the programming with quantum gate arrays, we will use a variant of the Deutsch-
Jozsa Problem. First, we define two properties of functions from {0, 1}n to {0, 1}.

Definition 10.4 A function f : {0, 1}n → {0, 1} is called non-balanced if one of the two values
of f has majority.

Definition 10.5 A function f : {0, 1}n → {0, 1} is non-constant if there exist x, y ∈ {0, 1}n

such that f(x) 6= f(y).

Notice that most (but not all) functions from {0, 1}n to {0, 1} have both properties simul-
taneously. The modified Detusch-Jozsa problem is described as follows:

Modified Deutsch-Jozsa Problem (MDJP):
Input: a computable function f : {0, 1}n → {0, 1}

5

Problem: to answer either “non-balanced” or “non-constant”, but the answer must
apply to f .

The original Deutsch-Jozsa problem dealt with strings rather than functions and was the first
example of a problem which can be solved exponentially faster on a quantum computer than
on a Turing machine. By recasting the original problem in the context of promise problems,
Berthiaume and Brassard proved some early results in relativized quantum complexity theory.
These results were improved upon first by Bernstein and Vazirani and then by Simon who proved
the following theorem.

Theorem 10.6 There exists an oracle relative to which there is a problem solvable in polyno-
mial time (with bounded error probability) on a quantum computer, but any probabilistic Turing
machine with bounded error probability claiming to solve this problem (using the oracle) will
require exponential time on infinitely many inputs.

Simon’s theorem is the strongest argument in favor of the superiority of quantum computers
over Turing machines. Moreover, the quantum gate array used in Simon’s proof is similar to the
one used by Shor for his factoring algorithm. In this subsection, we present a solution to the
MDJP using quantum gate arrays. This will allow us later to outline Shor’s factoring algorithm.

Consider now the MDJP. According to the Lecerf-Bennett theorem, for every Turing-computable
function f : {0, 1}n → {0, 1} there is a quantum gate array that performs the computation ex-
pressed in Figure 2.

F

f(x)0

xx

Figure 2: The gate for computing f .

Note that in the process of computing f it might be necessary to use additional qubits.
However, at the end they can be reversibly set back to 0 so that we do not have to consider
them here.

Suppose that the lowest qubit in the circuit is not in the basis state |0〉 but in some super-
position |ϕ〉 = α|0〉+ β|1〉 then, instead of f(x), the lowest bit would be in the state

α|f(x)〉+ β|1⊕ f(x)〉
where ⊕ is the XOR function.

6

Computing a function on a single input is fine, but the rules of quantum mechanics allow
much more. Recall that by linearity of quantum operations, if the input state is in quantum
superposition 1√

2
(|x, 0〉 + |y, 0〉) then the F gate will compute the superposition of f on both

values:

F

(
1√
2
(|x, 0〉+ |y, 0〉)

)
=

1√
2
(|x, f(x)〉+ |y, f(y)〉) .

Assume there is a way to unitarily generate (through some matrix Sn) a superposition of all
possible values of an n qubit register. That is, if the initial state of the register is all zero, then
Sn transforms it into a superposition of all 2n values of the first n qubits:

Sn| 0 . . . 0︸ ︷︷ ︸
n

〉 =
1√
2n

2n−1∑

i=0

|i〉 .

We can see that by first applying Sn and then F , we can compute in one sweep all possible
values for f in quantum superposition (see Figure 3).

0 n

0

S n
F

Figure 3: Computing f for all possible inputs.

F (Sn ⊗ I2)| 0 . . . 0︸ ︷︷ ︸
n

, 0〉 → F

(
1√
2n

2n−1∑

i=0

|i, 0〉
)
→ 1√

2n

2n−1∑

i=0

|i, f(i)〉 .

where I2 is the 2 × 2 identity matrix. The reader should take careful note of what is meant
by the diagram shown in Figure 3. While the operator Sn acts on n qubits, its mathematical
representation is a 2n × 2n unitary matrix.

We now show how to implement an Sn gate to achieve this form of quantum parallelism.
Consider the unitary matrix

S1 =
1√
2

(
1 1
1 −1

)
.

It is a simple matter to verify that S1 is indeed unitary. Note also that S−1
1 = S1. An S1 gate

is an elementary gate as it acts only on a single qubit: it transforms |0〉 into 1√
2
(|0〉 + |1〉) and

|1〉 into 1√
2
(|0〉 − |1〉). The desired Sn gate acts on a quantum register by sending each qubit

individually into a separate S1 gate (see Figure 4).

7

1S

1S

1S

1S

1S

1S

S 6

Figure 4: The quantum gate array for S6.

The unitary transformation induced by an Sn gate is given by the formula Sn =
⊗

n S1. This
has a nice recursive definition: if n > 1 then

Sn =

(
Sn−1 Sn−1

Sn−1 Sn−1

)
.

Or in ket notation,

Sn|x〉 =
1√
2n

2n−1∑

i=0

(−1)x¯i|i〉

where the operation x¯i represents the XOR of the bitweise AND of the strings x and i. Clearly,
if x is set of 0n, Sn performs the desired transformation.

With the conjunction of the Sn and F gates, a single computation produces all possible
values of the function f for each input. But these values are in quantum superposition and we
have seen that when observing it, only one output |x, f(x)〉 will be seen and the rest will be lost.
To get some benefit from superpositions, a more subtle use of quantum parallelism is needed.

Consider the following unitary transformation:

P =

(
1 0
0 −1

)
.

If a qubit is set to 0 nothing happens. But if it is set to 1, then the amplitude is multiplied by
−1. This gate “encodes” the value of the qubit into the sign of the amplitude. Now consider the
gate array in Figure 5 (where the observation D will be defined shortly). From our definitions,
we know that the state |ϕ〉 of the register just after the P gate is

|ϕ〉 =
1√
2n

2n−1∑

i=0

(−1)f(i)|i, f(i)〉 .

When that state goes through the final F gate, the values for f are again computed and
non-destructively combined using (in our case) the XOR function. Since f(i)⊕ f(i) = 0 for all

8

0 n

F

0

S n

P

F D

Figure 5: The quantum gate array for the MDJP.

i ∈ {0, 1}n, the final state before the observation is

|ϕ〉 =
1√
2n

2n−1∑

i=0

(−1)f(i)|i, 0〉 .

All the manipulations done so far had only one purpose: to transfer the values of f into the
amplitudes relative to each of the basis states. The power of quantum computation resides in the
interference of these amplitudes and the observation used to read the quantum states. We now
define the observation. Consider D = {Ea, Eb}, where the subspace Ea is the one-dimensional
space spanned by

|ψa〉 =
1√
2n

2n−1∑

i=0

|i, 0〉

and Eb = (Ea)
⊥, the orthogonal complement of Ea. Using D in the gate array above allows us

to answer the MDJP, that is to determine without errors whether f is non-balanced or non-
constant. To see this, recall that D will give the answer a or b with probabilities depending on
the amplitudes of |ϕ〉 in the subspaces Ea and Eb. We must find the expression of |ϕ〉 in the
basis defined by D. This is easy since D has only two subspaces, one being one-dimensional.
Let α and β be the projections of |ϕ〉 in Ea and Eb, then

|ϕ〉 = α|ψa〉+ β|ψb〉

where |ψb〉 is a vector in Eb and, of course, |ψa〉⊥|ψb〉. Observing the final state |ϕ〉 with D will
give the answer a or b with probability ||α||2 and ||β||2 respectively. Since the observation has
only two possible answers, ||β||2 = 1 − ||α||2. Also, finding the projection of |ϕ〉 in the one-
dimensional subspace Ea is simple. We now compute the exact expression for α, the projection
of |ϕ〉 into |ψ〉:

α = 〈ψa|ϕ〉

=

(
1√
2n

2n−1∑

i=0

〈i, 0|
) 

 1√
2n

2n−1∑

j=0

(−1)f(j)|j, 0〉



9

=
1

2n

2n−1∑

i=0

2n−1∑

j=0

(−1)f(j)〈i, 0|j, 0〉 .

But since 〈i, 0|j, 0〉 = 1 if and only if i = j and zero otherwise, the expression for α simplifies to

α =
1

2n

2n−1∑

i=0

(−1)f(i) .

We now look at the value of α for different functions f . If f is a balanced function, the sum
for α will contain exactly as many 1’s as −1’s, so in this case α = 0 and D will always give a
b answer and never a. If f is a constant function, the value for α will either be 1 or −1, so in
this case D always gives the answer a and never b. If f is of any other type, D will answer a or
b with various probabilities.

To demonstrate that the above quantum gate array solves the MDJP, we need to take the
above reasoning backwards. If the answer received from D is a, we know for certain that f
could not have been a balanced function, so answering “non-balanced” is correct. Similarly, if
D gives the answer b, then we know for certain that f could not have been a constant function,
so answering “non-constant” is correct.

10.5 Shor’s prime factorization algorithm

Every integer n has a unique decomposition into prime factors. However, finding this decom-
position when n is large is a difficult computational problem. The best method known to date
requires time O(ec(log n)1/3(log log n)2/3

) (see, for instance, Lenstra and Lenstra 93), which is expo-
nential in the size (the number of digits) of n. Whether the factoring problem can be solved in
polynomial time via classical computations is still unknown. Yet the faith in the hardness of
this problem is such that the security of many classical cryptographic protocols is based on the
impossibility of factoring efficiently.

Number theory offers another interesting problem: finding the order of an element. Given x
and n, find an r (called the order) such that xr ≡ 1 (mod n). As with the factoring problem,
no efficient algorithm is known for solving this problem. But while these problems appear very
different, they are closely related. Miller has shown that, using randomization, one could solve
the factoring problem if one had access to an oracle for finding the order of an element. His
reduction works as follows: first, make sure that n is odd and not a prime (there are efficient
primality testing algorithms). Then, use the following algorithm:

x =random(ZZ∗n)
r =order(x, n) // computes the order of x (mod n)
if r is odd or xr/2 ≡ −1 (mod n) then failure
else return gcd(xr/2 − 1, n)

Choosing a random number in ZZ∗n, doing the modular exponentiation and finding the gcd
(greatest common divisor) can all be done in polynomial time (see Knuth 81). The correctness
of the algorithm follows from the following observation. If r is even, then xr/2 is well-defined,

10

and if xr/2 6≡ −1 (mod n), then xr/2 + 1 6≡ 0 (mod n). Moreover, xr/2 − 1 6≡ 0 (mod n) since
otherwise r/2 would be the order of x. Furthermore,

(xr/2 − 1)(xr/2 + 1) = xr − 1 ≡ 0 (mod n)

since r is the order of x, which implies that gcd(xr/2 − 1, n) and gcd(xr/2 + 1, n) are factors of
n. Let k be the number of distinct odd prime factors of n. One can prove that, provided n
is odd and non-prime, the above algorithm will return a factor of n with probability at least
1 − 1/2k−1. Repeating this algorithm a polynomial number of times will produce a complete
factorization of n.

Shor’s breakthrough was to discover an efficient quantum algorithm to find the order of an
element. The factoring algorithm is simply Miller’s reduction where the oracle is replaced by a
call to this quantum algorithm. The next section gives a sketch of how to find the order of an
element using quantum superpositions.

10.5.1 Finding the order of an element

We now describe Shor’s algorithm to find the order r of an element x (mod n). There are
two distinct parts of the algorithm: the first is the quantum component, described next, which
produces a value c. Thanks to appropriately chosen amplitudes, this c has a relationship to r
such that a little (purely classical) post-processing in the second part can efficiently determine
r. We describe the quantum component using quantum gate arrays. First, we need to find an
m such that n2 ≤ 2m ≤ 2n2. The gate array operates on a 2m-qubit quantum register. Next,
we need a gate such that on input |a, 0〉 it computes |a, xa mod n〉. We know that modular
exponentiation can be done classically in polynomial time. So by the Lecerf-Bennett theorem
there exists a quantum gate Ex

n that efficiently implements this operation. This Ex
n gate is shown

in Figure 6.

E

0 nx

a a

x
n

m (mod)a

Figure 6: The gate Ex
n.

We only need one more quantum operation. Shor refined the Sn transformation used by Bern-
stein and Vazirani and Simon in the following way: instead of using phases that are ±1/

√
2m,

we now make use of the full spectrum of complex amplitudes. The transformation Am sends a

11

m qubit register in basis state |a〉 to

1√
2m

2m−1∑

c=0

ei(2πac)/2m|c〉 .

(Recall that for any a + ib ∈ IC of norm 1, there exists an angle Θ ∈ [0, 2π] such that a + ib =
cos Θ + i sin Θ = eiΘ.) This transformation is called the discrete quantum Fourier transform.
The fact that one can efficiently implement such a quantum gate is not immediately clear, if
only for the fact that the amplitudes seem to require increasing precision as m grows large.
However, Deutsch and Coppersmith independently found an efficient solution based on the Fast
Fourier Transform algorithm (Knuth 81) which only requires O(m2) elementary quantum gates.

0

0

E

m

m

x
n

S m mA

B

Figure 7: The gate array to find the order of an element.

The gate array for Shor’s algorithm to find the order r of an element x (mod n) is shown in
Figure 7. Sn was defined in the previous subsection and only serves to generate a superposition
of all possible values for the top half of the register. We then compute in quantum parallel the
modular exponentiation of x for all these values and then apply the Fourier Transform Am. The
state of the register just prior to the observation is: (omitting the (mod n) in the ket for clarity)

1

2m

2m−1∑

a=0

2m−1∑

c=0

ei(2πac)/2m|c, xa〉 .

Since we are using the standard observation, the observation will yield any basis state |c, xk〉
with probability ∣∣∣∣∣∣

∣∣∣∣∣∣
1

2m

∑

a: xa≡xk

ei(2πac)/2m

∣∣∣∣∣∣

∣∣∣∣∣∣

2

.

Shor proves that this probability vanishes everywhere except for basis states |c, xk〉 such that
there exists an integer d satisfying

∣∣∣∣∣
c

2m
− d

r

∣∣∣∣∣ ≤
1

2m+1

12

where the probability is at least 1/(3r2). This means that reading the final state of the register
will yield with high probability a value c such that the fraction c/2m is close to d/r. Because
2m > n2, there is only one fraction d/r that satisfies the above equality while keeping r < n. The
algorithm for finding that fraction d/r from c/2m is the post-processing we referred to earlier
and can be done efficiently by continued fraction expansion (see Knuth 81). This produces the
r we needed.

For a more detailed study of Shor’s algorithm including the necessary number theory which
was left out here, see Shor 94. Shor’s algorithm and Simon’s theorem are two of the most impor-
tant results in quantum complexity theory. Both are strong arguments in favor of the superiority
of quantum computing models over classical ones. But a proof that quantum computing models
are indeed stronger than classical ones seems still to be far away.

10.6 References

• A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolous, P. Shor, T. Sleator,
J. Smolin, and H. Weinfurter. Elementary gates for quantum computation. Phycial Review
Letters A, 1995.

• D. Deutsch and R. Jozsa. Rapid solutions of problems by quantum computation. In Proc.
of the Royal Society, London, Vol. A439, pp. 553–558, 1992.

• D.E. Knuth. The Art of Computer Programming, Vol. 2, Addison Wesley, 1981.

• A.K. Lenstra and H.W. Lenstra. The Development of the Number Field Sieve. Springer
Verlag, LNCS 1554, 1993.

• G.L. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer Science
13:300–317, 1976.

• P. Shor. Algorithms for quantum computing: discrete logarithms and factoring. In Proc.
of the 35th Symp. on Foundations of Computer Science, pp. 124–134, 1994.

• D. Simon. On the power of quantum computation. In Proc. of the 35th Symp. on
Foundations of Computer Science, pp. 116–123, 1994.

• A. Yao. Quantum circuit complexity. In Proc. of the 34th Symp. on Foundations of
Computer Science, pp. 352–361, 1993.

13

