

### 16 Bipartite Matching via Flows

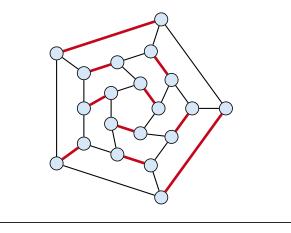
### Which flow algorithm to use?

- Generic augmenting path:  $\mathcal{O}(m \operatorname{val}(f^*)) = \mathcal{O}(mn)$ .
- Capacity scaling:  $\mathcal{O}(m^2 \log C) = \mathcal{O}(m^2)$ .
- Shortest augmenting path:  $\mathcal{O}(mn^2)$ .

For unit capacity simple graphs shortest augmenting path can be implemented in time  $\mathcal{O}(m\sqrt{n})$ .

### Matching

- Input: undirected graph G = (V, E).
- $M \subseteq E$  is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



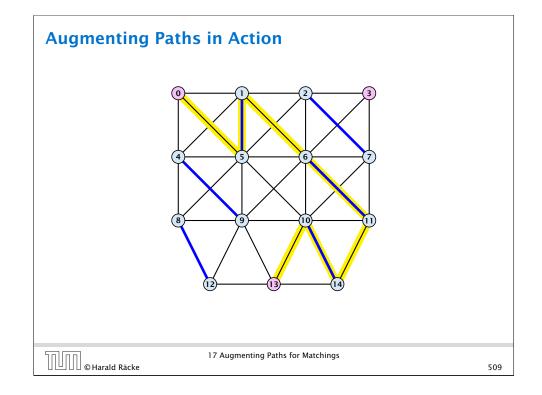
### **17 Augmenting Paths for Matchings**

### Definitions.

- Given a matching *M* in a graph *G*, a vertex that is not incident to any edge of *M* is called a free vertex w.r..t. *M*.
- ▶ For a matching *M* a path *P* in *G* is called an alternating path if edges in *M* alternate with edges not in *M*.
- An alternating path is called an augmenting path for matching *M* if it ends at distinct free vertices.

### Theorem 1

A matching M is a maximum matching if and only if there is no augmenting path w. r. t. M.



### **17 Augmenting Paths for Matchings**

### Proof.

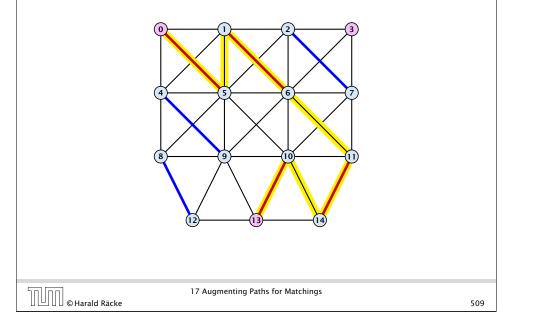
- ⇒ If *M* is maximum there is no augmenting path *P*, because we could switch matching and non-matching edges along *P*. This gives matching  $M' = M \oplus P$  with larger cardinality.
- $\Leftarrow \ \text{Suppose there is a matching } M' \text{ with larger cardinality.} \\ \text{Consider the graph } H \text{ with edge-set } M' \oplus M \text{ (i.e., only edges that are in either } M \text{ or } M' \text{ but not in both).} \\ \end{cases}$

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

As |M'| > |M| there is one connected component that is a path P for which both endpoints are incident to edges from M'. P is an alternating path.

510

### **Augmenting Paths in Action**



### **17 Augmenting Paths for Matchings**

### Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

### Theorem 2

Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let  $M' = M \oplus P$  denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M'.

The above theorem allows for an easier implementation of an augmenting path algorithm. Once we checked for augmenting paths starting from u we don't have to check for such paths in future rounds.



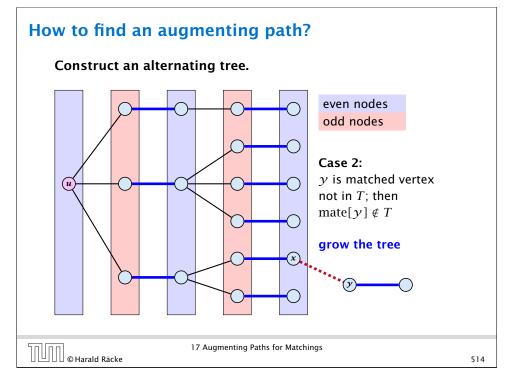
### **17 Augmenting Paths for Matchings**

### Proof

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (£).
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- u' splits P into two parts one of which does not contain e. Call this part P<sub>1</sub>. Denote the sub-path of P' from u to u' with P'<sub>1</sub>.
- $P_1 \circ P'_1$  is augmenting path in M (2).

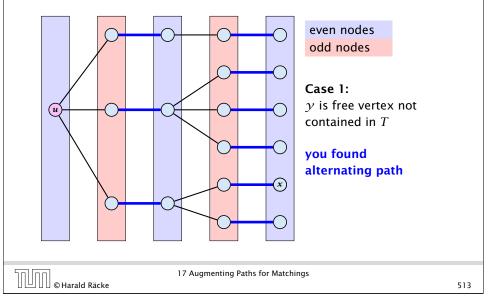
| <b>Harald Räcke</b> | 17 Augmenting Paths for Matchings | 512 |
|---------------------|-----------------------------------|-----|
|                     |                                   |     |

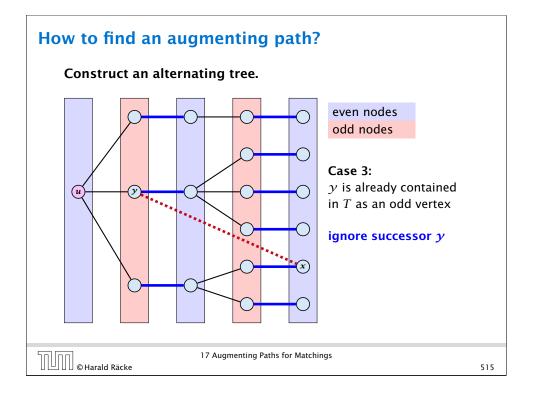
P'

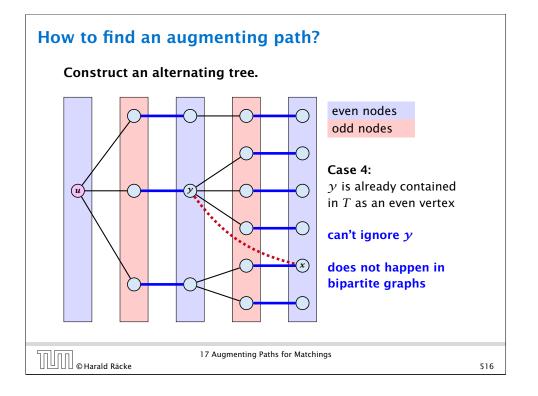


### How to find an augmenting path?

Construct an alternating tree.







### **18 Weighted Bipartite Matching**

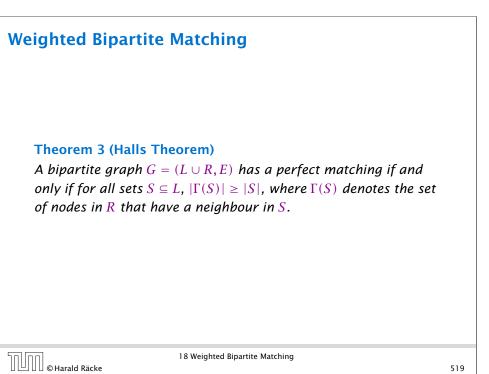
### Weighted Bipartite Matching/Assignment

- ▶ Input: undirected, bipartite graph  $G = L \cup R, E$ .
- an edge  $e = (\ell, r)$  has weight  $w_e \ge 0$
- find a matching of maximum weight, where the weight of a matching is the sum of the weights of its edges

### Simplifying Assumptions (wlog [why?]):

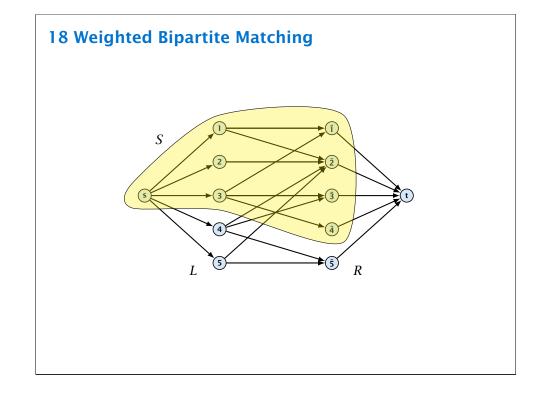
- assume that |L| = |R| = n
- assume that there is an edge between every pair of nodes  $(\ell, \gamma) \in V \times V$
- can assume goal is to construct maximum weight perfect matching

| 1.1 | for $x \in V$ do mate[x] $\leftarrow 0$ ;                        |                                  |
|-----|------------------------------------------------------------------|----------------------------------|
|     | $r \leftarrow 0$ ; free $\leftarrow n$ ;                         |                                  |
|     | while free $\geq 1$ and $r < n$ do                               |                                  |
|     | $r \leftarrow r + 1$                                             | graph $G = (S \cup S', E)$       |
| 5:  | if $mate[r] = 0$ then                                            | $S = \{1, \dots, n\}$            |
| 6:  | for $i = 1$ to $n$ do $parent[i'] \leftarrow 0$                  | $S' = \{1', \dots, n'\}$         |
| 7:  | $Q \leftarrow \emptyset; Q.$ append $(r); aug \leftarrow false;$ | 5 (1,,17)                        |
| 8:  | while $aug = false$ and $Q \neq \emptyset$ do                    |                                  |
| 9:  | $x \leftarrow Q$ . dequeue();                                    |                                  |
| 10: | for $\mathcal{Y} \in A_{\mathcal{X}}$ do                         |                                  |
| 11: | <b>if</b> $mate[y] = 0$ <b>then</b>                              |                                  |
| 12: | augm( <i>mate</i> , <i>parent</i> , <i>y</i> );                  |                                  |
| 13: | <i>aug</i> ← true;                                               |                                  |
| 14: | <i>free</i> $\leftarrow$ <i>free</i> $-1$ ;                      |                                  |
| 15: | else                                                             |                                  |
| 16: | if $parent[y] = 0$ then                                          |                                  |
| 17: | $parent[y] \leftarrow x;$                                        |                                  |
| 18: | $Q$ . enqueue( <i>mate</i> [ $\gamma$ ]);                        | The lecture version of the slide |





18 Weighted Bipartite Matching



### Halls Theorem

### Proof:

- Of course, the condition is necessary as otherwise not all nodes in *S* could be matched to different neighbours.
- ⇒ For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
  - Let *S* denote a minimum cut and let  $L_S \cong L \cap S$  and  $R_S \cong R \cap S$  denote the portion of *S* inside *L* and *R*, respectively.
  - Clearly, all neighbours of nodes in L<sub>S</sub> have to be in S, as otherwise we would cut an edge of infinite capacity.
  - This gives  $R_S \ge |\Gamma(L_S)|$ .
  - The size of the cut is  $|L| |L_S| + |R_S|$ .
  - Using the fact that  $|\Gamma(L_S)| \ge L_S$  gives that this is at least |L|.

G Harald Räcke

18 Weighted Bipartite Matching

### 521

### **Algorithm Outline**

### Idea:

We introduce a node weighting  $\vec{x}$ . Let for a node  $v \in V$ ,  $x_v \in \mathbb{R}$  denote the weight of node v.

Suppose that the node weights dominate the edge-weights in the following sense:

```
x_u + x_v \ge w_e for every edge e = (u, v).
```

- Let  $H(\vec{x})$  denote the subgraph of *G* that only contains edges that are tight w.r.t. the node weighting  $\vec{x}$ , i.e. edges e = (u, v) for which  $w_e = x_u + x_v$ .
- Try to compute a perfect matching in the subgraph H(x). If you are successful you found an optimal matching.

| յլլո | ©Harald | Räcke |
|------|---------|-------|
|------|---------|-------|

522

### **Algorithm Outline**

### Reason:

• The weight of your matching  $M^*$  is

$$\sum_{(u,v)\in M^*} w_{(u,v)} = \sum_{(u,v)\in M^*} (x_u + x_v) = \sum_v x_v \ .$$

• Any other perfect matching M (in G, not necessarily in  $H(\vec{x})$ ) has

$$\sum_{(u,v)\in M} w_{(u,v)} \le \sum_{(u,v)\in M} (x_u + x_v) = \sum_v x_v \; .$$

### **Algorithm Outline**

### What if you don't find a perfect matching?

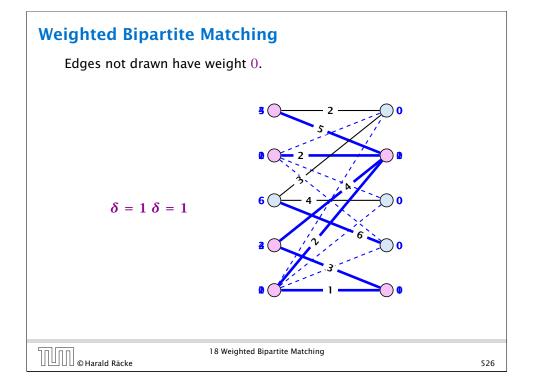
Then, Halls theorem guarantees you that there is a set  $S \subseteq L$ , with  $|\Gamma(S)| < |S|$ , where  $\Gamma$  denotes the neighbourhood w.r.t. the subgraph  $H(\vec{x})$ .

### Idea: reweight such that:

- the total weight assigned to nodes decreases
- the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

| רחח (הח                | 18 Weighted Bipartite Matching |     |  |
|------------------------|--------------------------------|-----|--|
| 🛛 🕒 🛛 🖉 © Harald Räcke |                                | 524 |  |

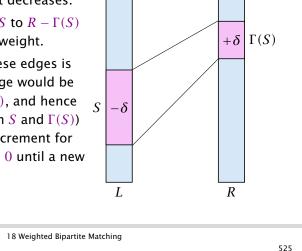


### **Changing Node Weights**

Increase node-weights in  $\Gamma(S)$  by  $+\delta$ , and decrease the node-weights in S by  $-\delta$ .

- Total node-weight decreases.
- Only edges from *S* to  $R \Gamma(S)$ decrease in their weight.
- Since, none of these edges is tight (otw. the edge would be contained in  $H(\vec{x})$ , and hence would go between *S* and  $\Gamma(S)$ ) we can do this decrement for small enough  $\delta > 0$  until a new edge gets tight.





### **Analysis**

### How many iterations do we need?

- One reweighting step increases the number of edges out of *S* by at least one.
- Assume that we have a maximum matching that saturates the set  $\Gamma(S)$ , in the sense that every node in  $\Gamma(S)$  is matched to a node in *S* (we will show that we can always find *S* and a matching such that this holds).
- This matching is still contained in the new graph, because all its edges either go between  $\Gamma(S)$  and S or between L - Sand  $R - \Gamma(S)$ .
- Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

### Analysis

- We will show that after at most n reweighting steps the size of the maximum matching can be increased by finding an augmenting path.
- This gives a polynomial running time.

| © Harald Räcke | 18 Weighted Bipartite Matching | 528 |
|----------------|--------------------------------|-----|
|                |                                |     |

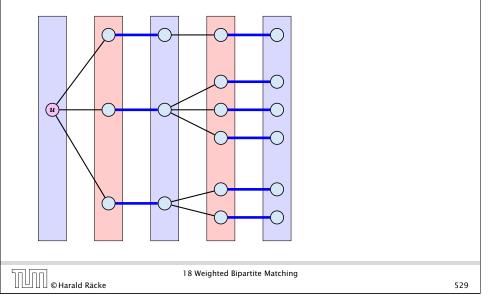
### Analysis

### How do we find S?

- Start on the left and compute an alternating tree, starting at any free node u.
- If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at *u*).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex *u*.
   Hence, |V<sub>odd</sub>| = |Γ(V<sub>even</sub>)| < |V<sub>even</sub>|, and all odd vertices are saturated in the current matching.

### How to find an augmenting path?

Construct an alternating tree.



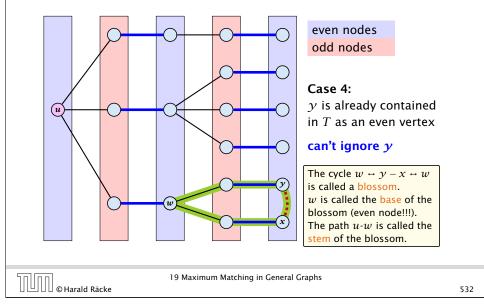
### Analysis

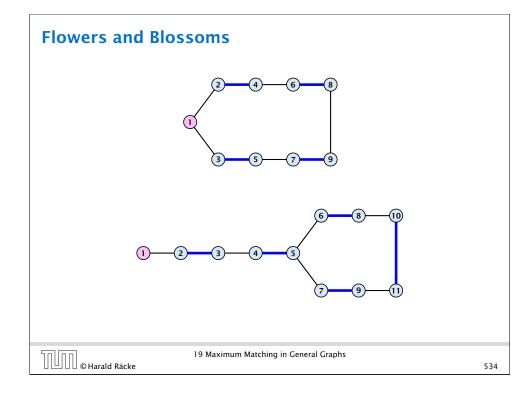
- ► The current matching does not have any edges from V<sub>odd</sub> to L \ V<sub>even</sub> (edges that may possibly be deleted by changing weights).
- After changing weights, there is at least one more edge connecting V<sub>even</sub> to a node outside of V<sub>odd</sub>. After at most n reweights we can do an augmentation.
- ► A reweighting can be trivially performed in time O(n<sup>2</sup>) (keeping track of the tight edges).
- An augmentation takes at most  $\mathcal{O}(n)$  time.
- In total we obtain a running time of  $\mathcal{O}(n^4)$ .
- A more careful implementation of the algorithm obtains a running time of  $\mathcal{O}(n^3)$ .



### How to find an augmenting path?

Construct an alternating tree.





### Flowers and Blossoms

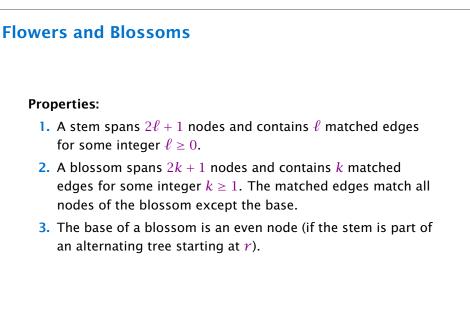
### **Definition 4**

A flower in a graph G = (V, E) w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that r = w (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

Marald Räcke

19 Maximum Matching in General Graphs



### **Flowers and Blossoms**

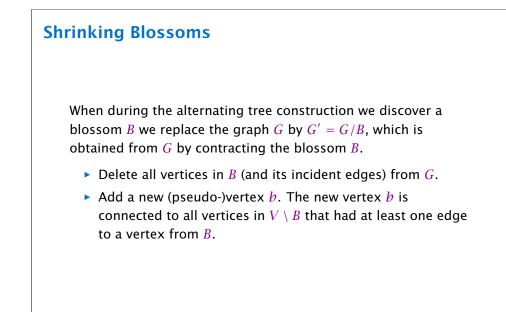
### **Properties:**

- 4. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
- 5. The even alternating path to x terminates with a matched edge and the odd path with an unmatched edge.

© Harald Räcke

19 Maximum Matching in General Graphs

536



# Flowers and Blossoms

## Shrinking Blossoms Edges of *T* that connect a node *u* not in *B* to a node in *B* become tree edges in *T'* connecting *u* to *b*. Matching edges (there is at most one) that connect a node *u* not in *B* to a node in *B* become matching edges in *M'*. Nodes that are connected in *G* to at least one node in *B* become connected to *b* in *G'*.

© Harald Räcke

### **Shrinking Blossoms**

- Edges of T that connect a node u not in B to a node in B become tree edges in T' connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- Nodes that are connected in G to at least one node in B become connected to b in G'.

| П | ۱I | ٦٢ | ٦l | © Harald |       |
|---|----|----|----|----------|-------|
| Ľ | ЦJ |    | Ш  | © Harald | Räcke |

19 Maximum Matching in General Graphs

539

### Correctness

Assume that in *G* we have a flower w.r.t. matching *M*. Let r be the root, *B* the blossom, and *w* the base. Let graph G' = G/B with pseudonode *b*. Let *M'* be the matching in the contracted graph.

### Lemma 5

If G' contains an augmenting path P' starting at r (or the pseudo-node containing r) w.r.t. the matching M' then G contains an augmenting path starting at r w.r.t. matching M.

| Example: Bl      | ossom Algorithm                       |     |
|------------------|---------------------------------------|-----|
|                  |                                       |     |
|                  |                                       |     |
|                  |                                       |     |
|                  |                                       |     |
|                  |                                       |     |
| (                |                                       |     |
| I                |                                       |     |
| 1                | Animation of Blossom Shrinking        |     |
|                  | algorithm is only available in the    |     |
| 1                | lecture version of the slides.        |     |
| 1                |                                       |     |
| -                |                                       |     |
|                  |                                       |     |
|                  |                                       |     |
|                  |                                       |     |
|                  |                                       |     |
| הח הר            | 19 Maximum Matching in General Graphs |     |
| UUU©Harald Räcke |                                       | 540 |
|                  |                                       |     |

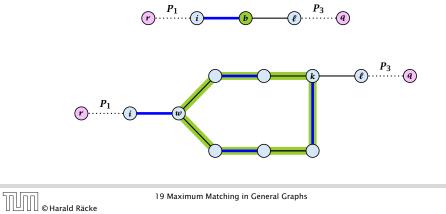
### Correctness

### Proof.

If P' does not contain b it is also an augmenting path in G.

### Case 1: non-empty stem

Next suppose that the stem is non-empty.



### Correctness

- ► After the expansion *ℓ* must be incident to some node in the blossom. Let this node be *k*.
- If  $k \neq w$  there is an alternating path  $P_2$  from w to k that ends in a matching edge.
- ▶  $P_1 \circ (i, w) \circ P_2 \circ (k, \ell) \circ P_3$  is an alternating path.
- If k = w then  $P_1 \circ (i, w) \circ (w, \ell) \circ P_3$  is an alternating path.

| GHarald Räcke | 19 Maximum Matching in General Graphs | 543 |
|---------------|---------------------------------------|-----|

### Correctness

### Lemma 6

If G contains an augmenting path P from r to q w.r.t. matching M then G' contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M'.

### Correctness

**G**Harald Räcke

**Correctness** 

Proof.

Case 2: empty stem

w = r.

### Proof.

If P does not contain a node from B there is nothing to prove.

If the stem is empty then after expanding the blossom,

• The path  $r \circ P_2 \circ (k, \ell) \circ P_3$  is an alternating path.

19 Maximum Matching in General Graphs

 $P_3$ 

P<sub>3</sub>

• We can assume that *r* and *q* are the only free nodes in *G*.

### Case 1: empty stem

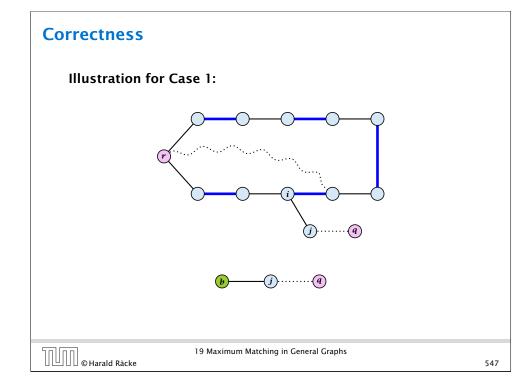
Let i be the last node on the path P that is part of the blossom.

P is of the form  $P_1 \circ (i,j) \circ P_2$  , for some node j and (i,j) is unmatched.

 $(b, j) \circ P_2$  is an augmenting path in the contracted network.

| ПΙ | ПП    | © Harald Räcke |
|----|-------|----------------|
|    | 1 U L | © Harald Räcke |





### Algorithm 24 search(r, found) 1: set $\bar{A}(i) \leftarrow A(i)$ for all nodes i

- 2: *found* ← false
- 3: unlabel all nodes;
- 4: give an even label to r and initialize *list*  $\leftarrow$  {r}
- 5: while  $list \neq \emptyset$  do
- 6: delete a node *i* from *list*
- 7: examine(i, found)
- 8: **if** *found* = true **then return**

### Search for an augmenting path starting at r.

The lecture version of the slides has a step by step explanation.

### Correctness

### Case 2: non-empty stem

Let  $P_3$  be alternating path from r to w; this exists because r and w are root and base of a blossom. Define  $M_+ = M \oplus P_3$ .

In  $M_+$ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching  $M_{\rm +},$  since M and  $M_{\rm +}$  have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t.  $M_+$ .

For  $M'_+$  the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t.  $M'_+$ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

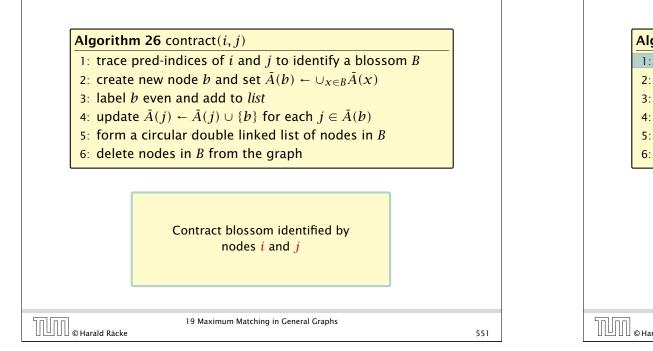
This path must go between r and q.

© Harald Räcke

19 Maximum Matching in General Graphs

| Algo        | rithm 25 examine( <i>i</i> , <i>found</i> )             |  |
|-------------|---------------------------------------------------------|--|
| 1: <b>f</b> | or all $j \in ar{A}(i)$ do                              |  |
| 2:          | if $j$ is even then contract $(i, j)$ and return        |  |
| 3:          | <b>if</b> <i>j</i> is unmatched <b>then</b>             |  |
| 4:          | $q \leftarrow j;$                                       |  |
| 5:          | $\operatorname{pred}(q) \leftarrow i;$                  |  |
| 6:          | <i>found</i> ← true;                                    |  |
| 7:          | return                                                  |  |
| 8:          | <b>if</b> <i>j</i> is matched and unlabeled <b>then</b> |  |
| 9:          | $\operatorname{pred}(j) \leftarrow i;$                  |  |
| 10:         | $pred(mate(j)) \leftarrow j;$                           |  |
| 11:         | add mate $(j)$ to <i>list</i>                           |  |

Examine the neighbours of a node *i* 



| Algorith   | m 26 contract( <i>i</i> , <i>j</i> )                                                |
|------------|-------------------------------------------------------------------------------------|
| 1: trace   | pred-indices of $i$ and $j$ to identify a blossom $B$                               |
| 2: create  | e new node b and set $\overline{A}(b) \leftarrow \bigcup_{x \in B} \overline{A}(x)$ |
| 3: label ) | <i>b</i> even and add to <i>list</i>                                                |
| 4: updat   | e $ar{A}(j) \leftarrow ar{A}(j) \cup \{b\}$ for each $j \in ar{A}(b)$               |
| 5: form    | a circular double linked list of nodes in B                                         |
| 6: delete  | e nodes in <i>B</i> from the graph                                                  |
|            | Get all nodes of the blossom.<br>Time: $\mathcal{O}(m)$                             |
|            |                                                                                     |
|            | 19 Maximum Matching in General Graphs                                               |

| A | lgo | rithm | 26 | contract(i, j) |  |
|---|-----|-------|----|----------------|--|
|---|-----|-------|----|----------------|--|

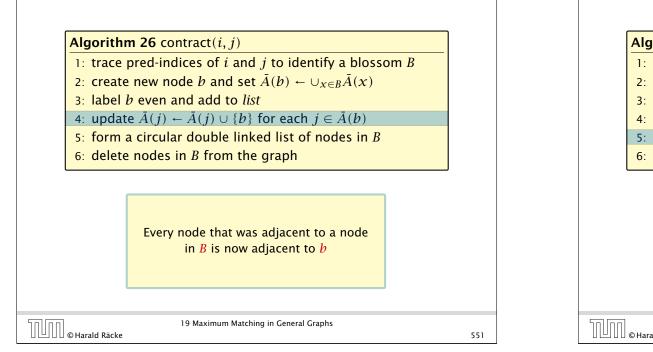
- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node *b* and set  $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label *b* even and add to *list*
- 4: update  $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$  for each  $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in *B*
- 6: delete nodes in *B* from the graph

### Identify all neighbours of **b**.

Time:  $\mathcal{O}(m)$  (how?)

| Algorithr      | <b>n 26</b> contract( <i>i</i> , <i>j</i> )                                      |  |
|----------------|----------------------------------------------------------------------------------|--|
| 1: trace       | pred-indices of $i$ and $j$ to identify a blossom $B$                            |  |
| 2: create      | new node $b$ and set $\overline{A}(b) \leftarrow \cup_{x \in B} \overline{A}(x)$ |  |
| 3: label i     | b even and add to <i>list</i>                                                    |  |
| 4: updat       | e $ar{A}(j) \leftarrow ar{A}(j) \cup \{b\}$ for each $j \in ar{A}(b)$            |  |
| 5: form a      | a circular double linked list of nodes in $B$                                    |  |
| 6: delete      | nodes in <i>B</i> from the graph                                                 |  |
|                | <i>b</i> will be an even node, and it has unexamined neighbours.                 |  |
| © Harald Bäcke | 19 Maximum Matching in General Graphs                                            |  |

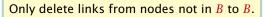
19 Maximum Matching in General Graphs



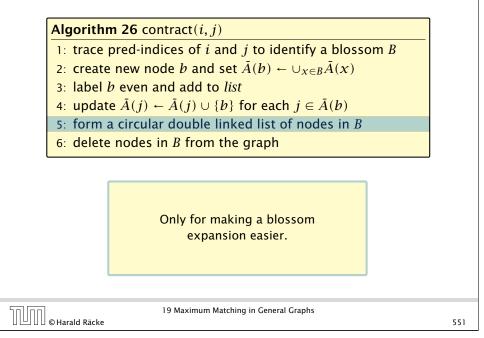
Algorithm 26 contract(*i*, *j*)

1: trace pred-indices of i and j to identify a blossom B

- 2: create new node b and set  $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label *b* even and add to *list*
- 4: update  $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$  for each  $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in *B* from the graph



When expanding the blossom again we can recreate these links in time  $\mathcal{O}(m)$ .



### Analysis

- A contraction operation can be performed in time O(m).
   Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time  $\mathcal{O}(m)$ .
- There are at most n contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time  $\mathcal{O}(n)$ . There are at most n of them.
- In total the running time is at most

```
n \cdot (\mathcal{O}(mn) + \mathcal{O}(n)) = \mathcal{O}(mn^2).
```

19 Maximum Matching in General Graphs

19 Maximum Matching in General Graphs

| Example: Blo   | ossom Algorithm                                                                                        |     |
|----------------|--------------------------------------------------------------------------------------------------------|-----|
|                | Animation of Blossom Shrinking<br>algorithm is only available in the<br>lecture version of the slides. |     |
| © Harald Räcke | 19 Maximum Matching in General Graphs                                                                  | 553 |

### Analysis Hopcroft-Karp

### Lemma 7

Given a matching M and a maximal matching  $M^*$  there exist  $|M^*| - |M|$  vertex-disjoint augmenting path w.r.t. M.

### Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- Consider the graph G = (V, M ⊕ M\*), and mark edges in this graph blue if they are in M and red if they are in M\*.
- ▶ The connected components of *G* are cycles and paths.
- ► The graph contains  $k \triangleq |M^*| |M|$  more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. M.

| הח הר | © Harald Räcke |
|-------|----------------|
|       | © Harald Räcke |

20 The Hopcroft-Karp Algorithm

555

### A Fast Matching Algorithm

### Algorithm 27 Bimatch-Hopcroft-Karp(G)1: $M \leftarrow \emptyset$ 2: repeat3: let $\mathcal{P} = \{P_1, \dots, P_k\}$ be maximal set of4: vertex-disjoint, shortest augmenting path w.r.t. M.5: $M \leftarrow M \oplus (P_1 \cup \dots \cup P_k)$ 6: until $\mathcal{P} = \emptyset$ 7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

Marald Räcke

20 The Hopcroft-Karp Algorithm

```
Analysis Hopcroft-Karp

• Let P_1, ..., P_k be a maximal collection of vertex-disjoint,

shortest augmenting paths w.r.t. M (let \ell = |P_i|).

• M' \cong M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.

• Let P be an augmenting path in M'.

Lemma 8

The set A \cong M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P contains at least

(k + 1)\ell edges.
```

### Analysis Hopcroft-Karp

### Proof.

- The set describes exactly the symmetric difference between matchings M and  $M' \oplus P$ .
- ► Hence, the set contains at least k + 1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- Each of these paths is of length at least  $\ell$ .

Contraction Contra

20 The Hopcroft-Karp Algorithm

### Analysis Hopcroft-Karp

If the shortest augmenting path w.r.t. a matching M has  $\ell$  edges then the cardinality of the maximum matching is of size at most  $|M| + \frac{|V|}{\ell+1}$ .

### Proof.

The symmetric difference between M and  $M^*$  contains  $|M^*| - |M|$  vertex-disjoint augmenting paths. Each of these paths contains at least  $\ell + 1$  vertices. Hence, there can be at most  $\frac{|V|}{\ell+1}$  of them.

### Analysis Hopcroft-Karp

### Lemma 9

*P* is of length at least  $\ell + 1$ . This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

### Proof.

- ► If P does not intersect any of the P<sub>1</sub>,..., P<sub>k</sub>, this follows from the maximality of the set {P<sub>1</sub>,..., P<sub>k</sub>}.
- ► Otherwise, at least one edge from *P* coincides with an edge from paths {*P*<sub>1</sub>,...,*P<sub>k</sub>*}.
- This edge is not contained in A.
- Hence,  $|A| \le k\ell + |P| 1$ .
- ► The lower bound on |A| gives  $(k+1)\ell \le |A| \le k\ell + |P| 1$ , and hence  $|P| \ge \ell + 1$ .

```
Marald Räcke
```

20 The Hopcroft-Karp Algorithm

### Analysis Hopcroft-Karp

### Lemma 10

The Hopcroft-Karp algorithm requires at most  $2\sqrt{|V|}$  phases.

### Proof.

- ► After iteration  $\lfloor \sqrt{|V|} \rfloor$  the length of a shortest augmenting path must be at least  $\lfloor \sqrt{|V|} \rfloor + 1 \ge \sqrt{|V|}$ .
- ► Hence, there can be at most  $|V|/(\sqrt{|V|} + 1) \le \sqrt{|V|}$  additional augmentations.

### Analysis Hopcroft-Karp

### Lemma 11

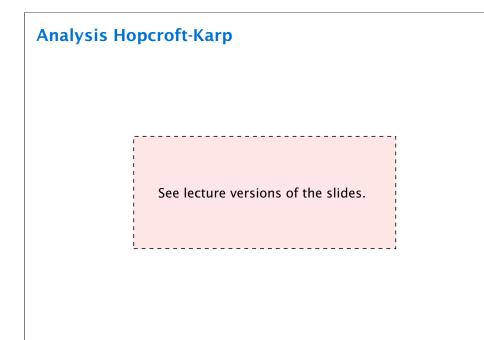
One phase of the Hopcroft-Karp algorithm can be implemented in time  $\mathcal{O}(m)$ .

construct a "level graph" *G*':

- construct Level 0 that includes all free vertices on left side L
- construct Level 1 containing all neighbors of Level 0
- construct Level 2 containing matching neighbors of Level 1
- construct Level 3 containing all neighbors of Level 2
- ▶ ...

stop when a level (apart from Level 0) contains a free vertex can be done in time  $\mathcal{O}(m)$  by a modified BFS

| MIN © Harald Räcke | 20 The Hopcroft-Karp Algorithm | 561 |
|--------------------|--------------------------------|-----|



### Analysis Hopcroft-Karp

- a shortest augmenting path must go from Level 0 to the last layer constructed
- it can only use edges between layers
- construct a maximal set of vertex disjoint augmenting path connecting the layers
- for this, go forward until you either reach a free vertex or you read a "dead end" v
- if you reach a free vertex delete the augmenting path and all incident edges from the graph
- $\blacktriangleright$  if you reach a dead end backtrack and delete v together with its incident edges



20 The Hopcroft-Karp Algorithm

