Part V

Matchings

Matching

- \blacktriangleright Input: undirected graph $G = (V, E)$.
- \blacktriangleright *M* \subseteq *E* is a matching if each node appears in at most one edge in *M*.
- ▶ Maximum Matching: find a matching of maximum cardinality

16 Bipartite Matching via Flows

Which flow algorithm to use?

- *►* Generic augmenting path: $O(m \text{ val}(f^*)) = O(mn)$.
- ▶ Capacity scaling: $O(m^2 \log C) = O(m^2)$.
- \blacktriangleright Shortest augmenting path: $\mathcal{O}(mn^2)$.

For unit capacity simple graphs shortest augmenting path can be implemented in time ^O*(m*[√] *n)*.

Definitions.

- \blacktriangleright Given a matching *M* in a graph *G*, a vertex that is not incident to any edge of *M* is called a free vertex w. r. .t. *M*.
- \blacktriangleright For a matching *M* a path *P* in *G* is called an alternating path if edges in *M* alternate with edges not in *M*.
- **Formula** An alternating path is called an augmenting path for matching *M* if it ends at distinct free vertices.

Theorem 1

A matching M is a maximum matching if and only if there is no augmenting path w. r. t. M.

Augmenting Paths in Action

Augmenting Paths in Action

Proof.

- ⇒ If *M* is maximum there is no augmenting path *P*, because we could switch matching and non-matching edges along *P*. This gives matching $M' = M \oplus P$ with larger cardinality.
- \Leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph *H* with edge-set $M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

As $|M'| > |M|$ there is one connected component that is a path *P* for which both endpoints are incident to edges from M' . P is an alternating path.

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 2

Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M' = M \oplus P$ *denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at* u *in* M' *.*

 $\frac{1}{2}$ The above theorem allows for an easier implementation of an augment- $\frac{1}{2}$ ing path algorithm. Once we checked for augmenting paths starting ' from *u* we don't have to check for such paths in future rounds.

Proof

- **Assume there is an augmenting** path P' w.r.t. M' starting at u .
- \blacktriangleright If *P*^{\prime} and *P* are node-disjoint, *P*^{\prime} is also augmenting path w.r.t. $M(\ell)$.
- \blacktriangleright Let u' be the first node on P' that is in *P*, and let *e* be the matching edge from M' incident to u' .
- \blacktriangleright *u'* splits *P* into two parts one of which does not contain *e*. Call this part P_1 . Denote the sub-path of P' from u to u' with P'_1 .
- \blacktriangleright *P*₁ ∘ *P*[']₁

Construct an alternating tree.

Algorithm 23 BiMatch*(G, match)*

```
1: for x \in V do mate[x] \leftarrow 0;
2: r \leftarrow 0; free \leftarrow n;
3: while free \geq 1 and r < n do
4: r \leftarrow r + 15: if mate[r] = 0 then<br>6: for i = 1 to n do n
 6: for i = 1 to n do parent[i'] \leftarrow 07: Q \leftarrow \emptyset; Q \cdot \text{append}(r); aug \leftarrow \text{false};<br>8: while qua = \text{false} and Q \neq \emptyset do
8: while aug = false and Q \neq \emptyset do <br>9: x \in O, dequience():
9: x \leftarrow Q. dequeue();<br>10: for y \in A_x do
10: for y \in A_x do if mate[y]
                    if mate[v] = 0 then
12: augm(mate, parent, y);
13: auq \leftarrow true;14: free ← free − 1;
                    else
16: if parent[y] = 0 then<br>
17: parent[v] \leftarrow x:
                            parent[y] \leftarrow x;
18: Q. enqueue(mate[y]);
```

```
graph G = (S \cup S', E)S = \{1, \ldots, n\}
```

$$
S' = \{1', \ldots, n'\}
$$

The lecture version of the slides contains a step-by-step explanation of the algorithm.

Weighted Bipartite Matching/Assignment

- *►* Input: undirected, bipartite graph $G = L \cup R$, E.
- \blacktriangleright an edge $e = (\ell, r)$ has weight $w_e \geq 0$
- ► find a matching of maximum weight, where the weight of a matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

- \blacktriangleright assume that $|L| = |R| = n$
- \triangleright assume that there is an edge between every pair of nodes $(\ell, r) \in V \times V$
- **▶ can assume goal is to construct maximum weight perfect** matching

Theorem 3 (Halls Theorem)

A bipartite graph $G = (L \cup R, E)$ *has a perfect matching if and only if for all sets* $S \subseteq L$, $|\Gamma(S)| \geq |S|$ *, where* $\Gamma(S)$ *denotes the set of nodes in R that have a neighbour in S.*

Halls Theorem

Proof:

- \Leftarrow Of course, the condition is necessary as otherwise not all nodes in *S* could be matched to different neigbhours.
- ⇒ For the other direction we need to argue that the minimum cut in the graph G' is at least $|L|$.
	- **►** Let *S* denote a minimum cut and let $L_S \text{ } L \cap S$ and $R_S \triangleq R \cap S$ denote the portion of *S* inside *L* and *R*, respectively.
	- \triangleright Clearly, all neighbours of nodes in L_S have to be in *S*, as otherwise we would cut an edge of infinite capacity.
	- \blacktriangleright This gives R_S ≥ $|\Gamma(L_S)|$.
	- *►* The size of the cut is $|L| |L_S| + |R_S|$.
	- *►* Using the fact that $| \Gamma(L_S) | \geq L_S$ gives that this is at least $|L|$.

Algorithm Outline

Idea:

We introduce a node weighting \vec{x} . Let for a node $v \in V$, $x_v \in \mathbb{R}$ denote the weight of node *v*.

Follo Suppose that the node weights dominate the edge-weights in the following sense:

 $x_u + x_v \geq w_e$ for every edge $e = (u, v)$.

- \blacktriangleright Let $H(\vec{x})$ denote the subgraph of *G* that only contains edges that are tight w.r.t. the node weighting \vec{x} , i.e. edges $e = (u, v)$ for which $w_e = x_u + x_v$.
- \blacktriangleright Try to compute a perfect matching in the subgraph $H(\vec{x})$. If you are successful you found an optimal matching.

Algorithm Outline

Reason:

ñ The weight of your matching *M*∗ is

$$
\sum_{(u,v)\in M^*} w_{(u,v)} = \sum_{(u,v)\in M^*} (x_u + x_v) = \sum_v x_v.
$$

 \triangleright Any other perfect matching *M* (in *G*, not necessarily in $H(\vec{x})$ has

$$
\sum_{(u,v)\in M} w_{(u,v)} \leq \sum_{(u,v)\in M} (x_u + x_v) = \sum_v x_v.
$$

18 Weighted Bipartite Matching

Algorithm Outline

What if you don't find a perfect matching?

Then, Halls theorem quarantees you that there is a set $S \subseteq L$. with $|\Gamma(S)| < |S|$, where Γ denotes the neighbourhood w.r.t. the subgraph $H(\vec{x})$.

Idea: reweight such that:

- \blacktriangleright the total weight assigned to nodes decreases
- **the weight function still dominates the edge-weights**

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

Changing Node Weights

Increase node-weights in $\Gamma(S)$ by $+\delta$, and decrease the node-weights in S by $-\delta$.

- ▶ Total node-weight decreases.
- *►* Only edges from *S* to $R \Gamma(S)$ decrease in their weight.
- ▶ Since, none of these edges is tight (otw. the edge would be contained in $H(\vec{x})$, and hence would go between *S* and Γ *(S)*) we can do this decrement for small enough *δ >* 0 until a new edge gets tight.

Edges not drawn have weight 0.

 $δ = 1 δ = 1$

18 Weighted Bipartite Matching

Analysis

How many iterations do we need?

- ▶ One reweighting step increases the number of edges out of *S* by at least one.
- \triangleright Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in *S* (we will show that we can always find *S* and a matching such that this holds).
- **Fig.** This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and *S* or between $L-S$ and $R - \Gamma(S)$.
- ▶ Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

Analysis

- \triangleright We will show that after at most *n* reweighting steps the size of the maximum matching can be increased by finding an augmenting path.
- **Fig.** This gives a polynomial running time.

Construct an alternating tree.

18 Weighted Bipartite Matching

Analysis

How do we find *S*?

- **▶ Start on the left and compute an alternating tree, starting at** any free node *u*.
- **Follo** If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at *u*).
- **Follow** The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- **All odd vertices are matched to even vertices. Furthermore,** the even vertices additionally contain the free vertex *u*. Hence, $|V_{odd}| = |\Gamma(V_{even})|$ \lt $|V_{even}|$, and all odd vertices are saturated in the current matching.

Analysis

- \blacktriangleright The current matching does not have any edges from V_{odd} to $L \setminus V_{even}$ (edges that may possibly be deleted by changing weights).
- **For After changing weights, there is at least one more edge** connecting V_{even} to a node outside of V_{odd} . After at most *n* reweights we can do an augmentation.
- \blacktriangleright A reweighting can be trivially performed in time $\mathcal{O}(n^2)$ (keeping track of the tight edges).
- \triangleright An augmentation takes at most $\mathcal{O}(n)$ time.
- \blacktriangleright In total we obtain a running time of $\mathcal{O}(n^4)$.
- \triangleright A more careful implementation of the algorithm obtains a running time of $O(n^3)$.

Construct an alternating tree.

19 Maximum Matching in General Graphs

Definition 4

A flower in a graph $G = (V, E)$ w.r.t. a matching M and a (free) root node r , is a subgraph with two components:

- **►** A stem is an even length alternating path that starts at the root node *r* and terminates at some node *w*. We permit the possibility that $r = w$ (empty stem).
- **► A blossom is an odd length alternating cycle that starts and** terminates at the terminal node *w* of a stem and has no other node in common with the stem. *w* is called the base of the blossom.

19 Maximum Matching in General Graphs

Properties:

- **1.** A stem spans $2\ell + 1$ nodes and contains ℓ matched edges for some integer $\ell \geq 0$.
- **2.** A blossom spans $2k + 1$ nodes and contains k matched edges for some integer $k \geq 1$. The matched edges match all nodes of the blossom except the base.
- 3. The base of a blossom is an even node (if the stem is part of an alternating tree starting at *r*).

Properties:

- 4. Every node *x* in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
- 5. The even alternating path to *x* terminates with a matched edge and the odd path with an unmatched edge.

19 Maximum Matching in General Graphs

Shrinking Blossoms

When during the alternating tree construction we discover a blossom *B* we replace the graph *G* by $G' = G/B$, which is obtained from *G* by contracting the blossom *B*.

- *ñ* Delete all vertices in *B* (and its incident edges) from *G*.
- *ñ* Add a new (pseudo-)vertex *b*. The new vertex *b* is connected to all vertices in $V \setminus B$ that had at least one edge to a vertex from *B*.

Shrinking Blossoms

- *ñ* Edges of *T* that connect a node *u* not in *B* to a node in *B* become tree edges in *T* 0 connecting *u* to *b*.
- **► Matching edges (there is at most** one) that connect a node *u* not in *B* to a node in *B* become matching edges in M' .
- *ñ* Nodes that are connected in *G* to at least one node in *B* become connected to b in G' .

Shrinking Blossoms

- *ñ* Edges of *T* that connect a node *u* not in *B* to a node in *B* become tree edges in *T* 0 connecting *u* to *b*.
- **► Matching edges (there is at most** one) that connect a node *u* not in *B* to a node in *B* become matching edges in M' .
- *ñ* Nodes that are connected in *G* to at least one node in *B* become connected to b in G' .

Example: Blossom Algorithm

Animation of Blossom Shrinking algorithm is only available in the lecture version of the slides.

19 Maximum Matching in General Graphs

Assume that in *G* we have a flower w.r.t. matching *M*. Let *r* be the root, *B* the blossom, and *w* the base. Let graph $G' = G/B$ with pseudonode b . Let M' be the matching in the contracted graph.

Lemma 5

If G' *contains an augmenting path* P' *starting at* r *(or the pseudo-node containing r) w.r.t. the matching M*0 *then G contains an augmenting path starting at r w.r.t. matching M.*

Proof.

If *P* 0 does not contain *b* it is also an augmenting path in *G*.

Case 1: non-empty stem

▶ Next suppose that the stem is non-empty.

19 Maximum Matching in General Graphs

- \blacktriangleright After the expansion ℓ must be incident to some node in the blossom. Let this node be *k*.
- **F** If $k \neq w$ there is an alternating path P_2 from w to k that ends in a matching edge.
- \blacktriangleright *P*₁ *(i, w) P*₂ *(k, ℓ) P*₃ is an alternating path.
- *►* If $k = w$ then $P_1 \circ (i, w) \circ (w, \ell) \circ P_3$ is an alternating path.

Proof.

Case 2: empty stem

Follo If the stem is empty then after expanding the blossom,

 $w = r$.

► The path $r \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.

Lemma 6

If G contains an augmenting path P from r to q w.r.t. matching M then *G*^{\prime} *contains an augmenting path from* γ *(or the pseudo-node containing* r) to q w.r.t. M' .

Proof.

- \blacktriangleright If *P* does not contain a node from *B* there is nothing to prove.
- \blacktriangleright We can assume that r and q are the only free nodes in G .

Case 1: empty stem

Let *i* be the last node on the path *P* that is part of the blossom.

P is of the form $P_1 \circ (i, j) \circ P_2$, for some node *j* and (i, j) is unmatched.

 $(b, j) \circ P_2$ is an augmenting path in the contracted network.

Illustration for Case 1:

19 Maximum Matching in General Graphs

Case 2: non-empty stem

Let P_3 be alternating path from r to w ; this exists because r and *w* are root and base of a blossom. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching *M*+, since *M* and M_{+} have same cardinality.

This path must go between *w* and *q* as these are the only unmatched vertices w.r.t. *M*+.

For M'_+ the blossom has an empty stem. Case 1 applies.

 G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M^{\prime} , as both matchings have the same cardinality.

This path must go between *r* and *q*.

Algorithm 24 search*(r,found)*

- 1: set $\bar{A}(i) \leftarrow A(i)$ for all nodes *i*
- 2: $found \leftarrow false$
- 3: unlabel all nodes;
- 4: give an even label to *r* and initialize *list* $\leftarrow \{r\}$
- 5: while $list \neq \emptyset$ do
- 6: delete a node *i* from *list*
- 7: examine*(i,found)*
- 8: if *found* = true then return

Algorithm 25 examine*(i,found)* 1: for all $j \in \overline{A}(i)$ do 2: **if** *j* is even then contract (i, j) and return 3: if *j* is unmatched then 4: $q \leftarrow j$; 5: $\text{pred}(q) \leftarrow i$; $6:$ *found* \leftarrow true; 7: return 8: if *j* is matched and unlabeled then 9: $\text{pred}(j) \leftarrow i$; 10: **pred** $(\text{mate}(j)) \leftarrow j$; 11: add mate*(j)* to *list*

- 1: trace pred-indices of *i* and *j* to identify a blossom *B*
- 2: create new node *b* and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
- 3: label *b* even and add to *list*
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in *B*
- 6: delete nodes in *B* from the graph

Contract blossom identified by nodes *i* and *j*

- 1: trace pred-indices of *i* and *j* to identify a blossom *B*
- 2: create new node *b* and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
- 3: label *b* even and add to *list*
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in *B*
- 6: delete nodes in *B* from the graph

Get all nodes of the blossom.

Time: O*(m)*

- 1: trace pred-indices of *i* and *j* to identify a blossom *B*
- 2: create new node *b* and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
- 3: label *b* even and add to *list*
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in *B*
- 6: delete nodes in *B* from the graph

Identify all neighbours of *b*.

Time: O*(m)* (how?)

- 1: trace pred-indices of *i* and *j* to identify a blossom *B*
- 2: create new node *b* and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$

3: label *b* even and add to *list*

- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in *B*

6: delete nodes in *B* from the graph

b will be an even node, and it has unexamined neighbours.

- 1: trace pred-indices of *i* and *j* to identify a blossom *B*
- 2: create new node *b* and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
- 3: label *b* even and add to *list*
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in *B*
- 6: delete nodes in *B* from the graph

Every node that was adjacent to a node in *B* is now adjacent to *b*

- 1: trace pred-indices of *i* and *j* to identify a blossom *B*
- 2: create new node *b* and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
- 3: label *b* even and add to *list*
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in *B*
- 6: delete nodes in *B* from the graph

Only for making a blossom expansion easier.

- 1: trace pred-indices of *i* and *j* to identify a blossom *B*
- 2: create new node *b* and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
- 3: label *b* even and add to *list*
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in *B*

6: delete nodes in *B* from the graph

Only delete links from nodes not in *B* to *B*. When expanding the blossom again we can recreate these links in time $O(m)$.

Analysis

- \blacktriangleright A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most *m* edges.
- **Fig. 2** The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- **▶ There are at most** *n* contractions as each contraction reduces the number of vertices.
- ▶ The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time $O(n)$. There are at most *n* of them.
- **►** In total the running time is at most

```
n \cdot (\mathcal{O}(mn) + \mathcal{O}(n)) = \mathcal{O}(mn^2).
```


Example: Blossom Algorithm

Animation of Blossom Shrinking algorithm is only available in the lecture version of the slides.

19 Maximum Matching in General Graphs

A Fast Matching Algorithm

We call one iteration of the repeat-loop a phase of the algorithm.

Lemma 7

Given a matching M and a maximal matching M∗ *there exist* |*M*∗| − |*M*| *vertex-disjoint augmenting path w.r.t. M.*

Proof:

- ▶ Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- **►** Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in *M* and red if they are in *M*∗.
- ▶ The connected components of *G* are cycles and paths.
- **►** The graph contains $k \triangleq |M^*| |M|$ more red edges than blue edges.
- \blacktriangleright Hence, there are at least k components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. *M*.

- \blacktriangleright Let P_1, \ldots, P_k be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. *M* (let $\ell = |P_i|$).
- \blacktriangleright *M*['] <u>def</u> *M* \oplus $(P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k$.
- \blacktriangleright Let *P* be an augmenting path in M' .

Lemma 8

The set $A \triangleq M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ *contains at least* $(k + 1)\ell$ *edges.*

Proof.

- **Follow** The set describes exactly the symmetric difference between matchings *M* and $M' \oplus P$.
- \blacktriangleright Hence, the set contains at least $k+1$ vertex-disjoint augmenting paths w.r.t. M as $|M'| = |M| + k + 1$.
- **F** Each of these paths is of length at least ℓ .

Lemma 9

P is of length at least $\ell + 1$. This shows that the length of a *shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.*

Proof.

- **Fig.** If *P* does not intersect any of the P_1, \ldots, P_k , this follows from the maximality of the set $\{P_1, \ldots, P_k\}$.
- ▶ Otherwise, at least one edge from *P* coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- **►** This edge is not contained in *A*.
- \blacktriangleright Hence, $|A| \leq k\ell + |P| 1$.
- *►* The lower bound on |*A*| gives $(k + 1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M| + \frac{|V|}{\ell+1}.$

Proof.

The symmetric difference between *M* and *M*∗ contains |*M*∗| − |*M*| vertex-disjoint augmenting paths. Each of these paths contains at least $\ell + 1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

Lemma 10

The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

Proof.

- \blacktriangleright After iteration $\lfloor\sqrt{|V|}\rfloor$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \ge \sqrt{|V|}$.
- \blacktriangleright Hence, there can be at most $|V|/(\sqrt{|V|} + 1) \le \sqrt{|V|}$ additional augmentations.

Lemma 11

One phase of the Hopcroft-Karp algorithm can be implemented in time $O(m)$.

- construct a "level graph" *G*0 :
	- *ñ* construct Level 0 that includes all free vertices on left side *L*
	- **Follow 2** construct Level 1 containing all neighbors of Level 0
	- \triangleright construct Level 2 containing matching neighbors of Level 1
	- **Follow 2** construct Level 3 containing all neighbors of Level 2
	- *ñ* . . .

▶ stop when a level (apart from Level 0) contains a free vertex can be done in time $O(m)$ by a modified BFS

- **▶ a shortest augmenting path must go from Level 0 to the last** layer constructed
- ► it can only use edges between layers
- **Four construct a maximal set of vertex disjoint augmenting path** connecting the layers
- **For this, go forward until you either reach a free vertex or** you read a "dead end" *v*
- **Fig.** if you reach a free vertex delete the augmenting path and all incident edges from the graph
- **Fig.** if you reach a dead end backtrack and delete ν together with its incident edges

See lecture versions of the slides.