Proof

Max cardinality matching in $G \leq$ value of maxflow in G'

- \blacktriangleright Given a maximum matching *M* of cardinality *k*.
- \blacktriangleright Consider flow *f* that sends one unit along each of *k* paths.
- \blacktriangleright *f* is a flow and has cardinality *k*.

12.1 Matching

Which flow algorithm to use?

- *►* Generic augmenting path: $O(m \text{ val}(f^*)) = O(mn)$.
- ▶ Capacity scaling: $O(m^2 \log C) = O(m^2)$.
- \blacktriangleright Shortest augmenting path: $\mathcal{O}(mn^2)$.

For unit capacity simple graphs shortest augmenting path can be implemented in time ^O*(m*[√] *n)*.

A graph is a unit capacity simple graph if **P** every edge has capacity 1 ▶ a node has either at most one leaving edge or at most one entering edge

12.1 Matching

Proof

Max cardinality matching in $G \geq$ value of maxflow in G'

- \blacktriangleright Let *f* be a maxflow in *G'* of value *k*
- $▶$ Integrality theorem \Rightarrow *k* integral; we can assume *f* is 0/1.
- \blacktriangleright Consider *M* = set of edges from *L* to *R* with $f(e) = 1$.
- *ñ* Each node in *L* and *R* participates in at most one edge in *M*.
- \blacktriangleright $|M| = k$, as the flow must use at least *k* middle edges.

Baseball Elimination

Which team can end the season with most wins?

- ▶ Montreal is eliminated, since even after winning all remaining games there are only 80 wins.
- ▶ But also Philadelphia is eliminated. Why?

Baseball Elimination

Formal definition of the problem:

- *^ñ* Given a set *S* of teams, and one specific team *z* ∈ *S*.
- \blacktriangleright Team *x* has already won w_x games.
- \blacktriangleright Team *x* still has to play team *y*, r_{xy} times.
- \triangleright Does team *z* still have a chance to finish with the most number of wins.

Baseball Elimination

Flow network for $z = 3$. *M* is number of wins Team 3 can still obtain.

Idea. Distribute the results of remaining games in such a way that no team gets too many wins.

Theorem 1

A team z is eliminated if and only if the flow network for z does \bm{n} ot allow a flow of value $\sum_{ij \in S \setminus \{z\}, i < j} r_{ij}$.

Proof $($ \Leftarrow $)$

- *ñ* Consider the mincut *A* in the flow network. Let *T* be the set of team-nodes in *A*.
- \blacktriangleright If for node $x \cdot \nu$ not both team-nodes x and ν are in T, then $x-y \notin A$ as otw. the cut would cut an infinite capacity edge.
- ▶ We don't find a flow that saturates all source edges:

$r(S \setminus \{z\})$ > cap $(A, V \setminus A)$

≥ X *i<j*: *ⁱ*∉*T*∨*j*∉*^T* r_{ij} + \sum *i*∈*T* $(M - w_i)$ $\geq r(S \setminus \{z\}) - r(T) + |T|M - w(T)|$

 \blacktriangleright This gives $M < (w(T) + r(T))/|T|$, i.e., *z* is eliminated.

Baseball Elimination

Proof $($ ⇒)

- ▶ Suppose we have a flow that saturates all source edges.
- **► We can assume that this flow is integral.**
- **For every pairing** $x \cdot y$ **it defines how many games team** x and team γ should win.
- \blacktriangleright The flow leaving the team-node *x* can be interpreted as the additional number of wins that team *x* will obtain.
- *i* This is less than *M* − *w*_{*x*} because of capacity constraints.
- **▶ Hence, we found a set of results for the remaining games,** such that no team obtains more than *M* wins in total.
- **►** Hence, team *z* is not eliminated.

Project Selection

The prerequisite graph:

- $\rightarrow \{x, a, z\}$ is a feasible subset.
- \blacktriangleright {*x, a*} is infeasible.

Project Selection

Project selection problem:

- \triangleright Set *P* of possible projects. Project *v* has an associated profit p_v (can be positive or negative).
- \triangleright Some projects have requirements (taking course EA2 requires course EA1).
- \triangleright Dependencies are modelled in a graph. Edge (u, v) means "can't do project *u* without also doing project *v*."
- **★** A subset *A* of projects is feasible if the prerequisites of every project in *A* also belong to *A*.

Goal: Find a feasible set of projects that maximizes the profit.

12.3 Project Selection

Project Selection

Mincut formulation:

- **F** Edges in the prerequisite graph get infinite capacity.
- Add edge (s, v) with capacity p_v for nodes *v* with positive profit.
- *►* Create edge (v, t) with capacity $-p_v$ for nodes *v* with negative profit.

